• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CARS untersuchung von energietransferprozessen am Na-H2- system

Cunha, Silvio Luiz Souza January 1986 (has links)
Der Energietransfer von elektronischer Energie in Schwingungs- und Rotationsenergie ist einer der elementarsten nichtadiabatischen Prozesse. Obwohl diese Prozesse seit langen untersucht werden, sind sie nicht im Detail verstanden. Das StoBsystem Na+H2 hat dabei Modellcharakter. Natrium ist ein Wasserstoffãhnliches Atom mit einem s-Elektron auf der auBersten Schale, und H2 ist das einfachste Molekül überhaupt. Ab initio Potentialflachen- Berechnungen sind deshalb mit guter Genauigkeit moglich und auch durchgef iihrt worden. Die elektronische Energie des Na-Atoms von 2,1eV wird dabei durch einen nichtadiabatischen Stoi3 in Schwingungs- und Rotationsenergie des H2-Moleküls iibertragen; ein Vorgang der auch als "Quenchen" bekannt ist. Von essentieller Bedeutung ist es, welche Schwingungs- und Rotationszustãnde besetzt werden. Es gab bisher keine experimentelle Untersuchung, bei der die interne Energieverteilung des H2-Moleküls direkt untersucht wurde. Der Grund dafür ist der, daB konventionelle Techniken zum Nachweis von H2 nicht geeignet sind. Aufgabe der vorliegenden Arbeit war es, erstmals CARS (Kohirente Antistokes-Raman-Streuung) für die oben genannten StoBprozesse einzusetzen und nachzuprüfen, wie gut sich diese Technik anwenden IãBt. CARS ist seit vielen Jahren bekannt, hat jedoch erst in der letzten Zeit durch die Entwicklung von intensiven gepulsten Laser mit geringer Bandbreite sehr an Bedeutung gewonnen. Insbesonders CARS an Wasserstoff wurde intensiv untersucht, nicht jedoch mit Beimischung von Natrium. Im vorliegenden Gasgemisch aus Natrium und H2 erzeugt Natrium durch seine energetisch sehr niedrigen elektronischen Zustãnde einen nichtresonanten Untergrund, der die Nachweis-Wahrscheinlichkeit so stark reduzieren kann, daí3 eine sinnvolle Anwendung nicht mehr mõglich sein konnte. Es ist gelungen zu zeigen, dali trotz eines enormen nichtresonanten Untergrundes eine sehr hohe Nachweiswahrscheinlichkeit mit CARS erzielt werden kann. Sie betrãgt für H2 mit Na im Grundzustand 1012 Teilchen pro cm3 und Quantenzustand und in Gegenwart von angeregtem Natrium 1013 Teilchen pro cm 3 und Quantenzustand. Mit der neu gebauten CARS-Apparatur wurde eine Reihe von neuen Experimenten durchgef a) Es konnte erstmals direkt die Schwingungsverteilung von H2 nach dem Quenchprozel3 bestimmt werden. Es konnte die absolute Besetzung der Schwingungszustãnde v=3,2 und 1 bestimmt werden. Eine Besetzung bei v=4 wurde nicht beobachtet. b) Mit einer zeitabhãngigen CARS-Messung konnte erstmalig die Schwingungsrelaxation der genannten Schwingungszustãnde gemessen und mit einem Ratengleichungsmodell die Ratenkonstanten mit sehr guter Obereinstimmung bestimmt werden. c) Aus der Besetzung der Schwingungszustãnde laBt sich ein absoluter Querschnitt für den Quenchprozei bestimmen. In Vergleich zu den klassischen Fluoreszenzmethoden wird dabei nicht die Abnahme der Fluoreszenz durch den StoBgasdruck bestimmt, sondern die direkte Besetzung des Quenchers nachgewiesen. Diese Methode wird erstmalig vorgestellt. Sie ist viel weniger empfindlich auf Verunreinigungen. Der erhaltene Wert für den Quenchquerschnitt betragt aq=12A2. d) Es laBt sich auch eine Aussage Uber die Rotationsbesetzung nach dem QuenchprozeB machen. Sie konnte bestimmt werden und ist nahezu thermisch, d.h. sie hat dieselbe Temperatur wie die Zelle. Dieses Ergebnis ist in übereinstimmung mit theoretische Modellen und bestãtigt die Vorstellung, dali das p-Orbital des angeregten Natriums sich bei Annãherung an das H2-Molekül ausrichtet und der QuenchprozeB vorwiegend in C2v -Symmetrie ablauft. Es ist gelungen zu zeigen, daB CARS sich erfolgreich für Untersuchungen an nichtadiabatischen StoBprozessen einsetzen laBt. Dadurch wurde erstmals erzielt. / Nonadiabatic collisions between atoms and molecules have drawn a large amount of attention in theoretical and experimental studies. In particular, the transfer of electronic energy of an atom to the vibrational, rotational and translational energy of a diatomic molecule (also called electronic quenching) can be considered an important fundamental process of this type and is thus extensively investigated. We study the Na + 112 as a model collision system for experimental and theoretical reasons since ab initio potential surfaces are currently available, enabling comparison of experimental results with theoretical calculations. We apply a new experimental technique in the field of nonadiabatic processes to obtain a more detailed understanding of these energy transfer processes. We use Coherent Anti-Stokes Raman Spectroscopy (CARS) to measure directly the internai energy distribution of H2 molecules produced by quenching of Na in the first excited state (3 2P112). Although CARS has been used to detect 112 among other species, it has never been applied to gaseous mixtures with H2 and atomic or molecular sodium. Sodium with its low lying electronic states produces a strong nonresonant background that strongly reduces the sensitivity of CARS. With a new constructed apparatus a sensitivity for H2 of 1012 particles per cm3 and quantum state in the presence of ground state sodium was achieved and 1013 particles per cm3 and quantum state with excited sodium. The following results were obtained: 1. The absolute population of vibrational leveis up to v=3 has been obtained and was found to be extremly nonthermal. The state distribution is, however, in good agreement with the available theoretical predictions. 2. With a time resolved CARS experiment we monitored the vibrational relaxation of these states. For this experiment we use excited sodium as an effective way to produce vibrationally hot hydrogen. With a simple model, we determined for the first time the vibrational relaxation time for v=3, 2 and 1 to be 2.4ps, 3.4ps and 31ps respectively. 3. From the measured absolute populations of the vibrational states of hydrogen the absolute cross section for the quenching process can be determined. This novel technique is not sensitive to impurities that also quench the electronic states of sodium very effectively. Our method involves only processes that produce vibrationally excited hydrogen. Due to the large vibrational spacing only H2 molecules that have undergone a quenching process are vibrationally excited. The cross section we determinei! is 12 cA'2, and is smaller than literature values due to the effect described. 4. We also measured the rotational distribution for different vibrational leveis. At the sensitivity limit of our apparatus the rotational distribution was estimated to be nearly thermal. This fact is also in good agreement with theoretical models for the collision process. It has heen shown that CARS is a very usefull spectroscopic technique with sufficient sensitivity to be applied to the study of nonadiabatic collision processes. CARS was used for the first time to investigate these processes and gave the new interesting results shown above.
2

CARS untersuchung von energietransferprozessen am Na-H2- system

Cunha, Silvio Luiz Souza January 1986 (has links)
Der Energietransfer von elektronischer Energie in Schwingungs- und Rotationsenergie ist einer der elementarsten nichtadiabatischen Prozesse. Obwohl diese Prozesse seit langen untersucht werden, sind sie nicht im Detail verstanden. Das StoBsystem Na+H2 hat dabei Modellcharakter. Natrium ist ein Wasserstoffãhnliches Atom mit einem s-Elektron auf der auBersten Schale, und H2 ist das einfachste Molekül überhaupt. Ab initio Potentialflachen- Berechnungen sind deshalb mit guter Genauigkeit moglich und auch durchgef iihrt worden. Die elektronische Energie des Na-Atoms von 2,1eV wird dabei durch einen nichtadiabatischen Stoi3 in Schwingungs- und Rotationsenergie des H2-Moleküls iibertragen; ein Vorgang der auch als "Quenchen" bekannt ist. Von essentieller Bedeutung ist es, welche Schwingungs- und Rotationszustãnde besetzt werden. Es gab bisher keine experimentelle Untersuchung, bei der die interne Energieverteilung des H2-Moleküls direkt untersucht wurde. Der Grund dafür ist der, daB konventionelle Techniken zum Nachweis von H2 nicht geeignet sind. Aufgabe der vorliegenden Arbeit war es, erstmals CARS (Kohirente Antistokes-Raman-Streuung) für die oben genannten StoBprozesse einzusetzen und nachzuprüfen, wie gut sich diese Technik anwenden IãBt. CARS ist seit vielen Jahren bekannt, hat jedoch erst in der letzten Zeit durch die Entwicklung von intensiven gepulsten Laser mit geringer Bandbreite sehr an Bedeutung gewonnen. Insbesonders CARS an Wasserstoff wurde intensiv untersucht, nicht jedoch mit Beimischung von Natrium. Im vorliegenden Gasgemisch aus Natrium und H2 erzeugt Natrium durch seine energetisch sehr niedrigen elektronischen Zustãnde einen nichtresonanten Untergrund, der die Nachweis-Wahrscheinlichkeit so stark reduzieren kann, daí3 eine sinnvolle Anwendung nicht mehr mõglich sein konnte. Es ist gelungen zu zeigen, dali trotz eines enormen nichtresonanten Untergrundes eine sehr hohe Nachweiswahrscheinlichkeit mit CARS erzielt werden kann. Sie betrãgt für H2 mit Na im Grundzustand 1012 Teilchen pro cm3 und Quantenzustand und in Gegenwart von angeregtem Natrium 1013 Teilchen pro cm 3 und Quantenzustand. Mit der neu gebauten CARS-Apparatur wurde eine Reihe von neuen Experimenten durchgef a) Es konnte erstmals direkt die Schwingungsverteilung von H2 nach dem Quenchprozel3 bestimmt werden. Es konnte die absolute Besetzung der Schwingungszustãnde v=3,2 und 1 bestimmt werden. Eine Besetzung bei v=4 wurde nicht beobachtet. b) Mit einer zeitabhãngigen CARS-Messung konnte erstmalig die Schwingungsrelaxation der genannten Schwingungszustãnde gemessen und mit einem Ratengleichungsmodell die Ratenkonstanten mit sehr guter Obereinstimmung bestimmt werden. c) Aus der Besetzung der Schwingungszustãnde laBt sich ein absoluter Querschnitt für den Quenchprozei bestimmen. In Vergleich zu den klassischen Fluoreszenzmethoden wird dabei nicht die Abnahme der Fluoreszenz durch den StoBgasdruck bestimmt, sondern die direkte Besetzung des Quenchers nachgewiesen. Diese Methode wird erstmalig vorgestellt. Sie ist viel weniger empfindlich auf Verunreinigungen. Der erhaltene Wert für den Quenchquerschnitt betragt aq=12A2. d) Es laBt sich auch eine Aussage Uber die Rotationsbesetzung nach dem QuenchprozeB machen. Sie konnte bestimmt werden und ist nahezu thermisch, d.h. sie hat dieselbe Temperatur wie die Zelle. Dieses Ergebnis ist in übereinstimmung mit theoretische Modellen und bestãtigt die Vorstellung, dali das p-Orbital des angeregten Natriums sich bei Annãherung an das H2-Molekül ausrichtet und der QuenchprozeB vorwiegend in C2v -Symmetrie ablauft. Es ist gelungen zu zeigen, daB CARS sich erfolgreich für Untersuchungen an nichtadiabatischen StoBprozessen einsetzen laBt. Dadurch wurde erstmals erzielt. / Nonadiabatic collisions between atoms and molecules have drawn a large amount of attention in theoretical and experimental studies. In particular, the transfer of electronic energy of an atom to the vibrational, rotational and translational energy of a diatomic molecule (also called electronic quenching) can be considered an important fundamental process of this type and is thus extensively investigated. We study the Na + 112 as a model collision system for experimental and theoretical reasons since ab initio potential surfaces are currently available, enabling comparison of experimental results with theoretical calculations. We apply a new experimental technique in the field of nonadiabatic processes to obtain a more detailed understanding of these energy transfer processes. We use Coherent Anti-Stokes Raman Spectroscopy (CARS) to measure directly the internai energy distribution of H2 molecules produced by quenching of Na in the first excited state (3 2P112). Although CARS has been used to detect 112 among other species, it has never been applied to gaseous mixtures with H2 and atomic or molecular sodium. Sodium with its low lying electronic states produces a strong nonresonant background that strongly reduces the sensitivity of CARS. With a new constructed apparatus a sensitivity for H2 of 1012 particles per cm3 and quantum state in the presence of ground state sodium was achieved and 1013 particles per cm3 and quantum state with excited sodium. The following results were obtained: 1. The absolute population of vibrational leveis up to v=3 has been obtained and was found to be extremly nonthermal. The state distribution is, however, in good agreement with the available theoretical predictions. 2. With a time resolved CARS experiment we monitored the vibrational relaxation of these states. For this experiment we use excited sodium as an effective way to produce vibrationally hot hydrogen. With a simple model, we determined for the first time the vibrational relaxation time for v=3, 2 and 1 to be 2.4ps, 3.4ps and 31ps respectively. 3. From the measured absolute populations of the vibrational states of hydrogen the absolute cross section for the quenching process can be determined. This novel technique is not sensitive to impurities that also quench the electronic states of sodium very effectively. Our method involves only processes that produce vibrationally excited hydrogen. Due to the large vibrational spacing only H2 molecules that have undergone a quenching process are vibrationally excited. The cross section we determinei! is 12 cA'2, and is smaller than literature values due to the effect described. 4. We also measured the rotational distribution for different vibrational leveis. At the sensitivity limit of our apparatus the rotational distribution was estimated to be nearly thermal. This fact is also in good agreement with theoretical models for the collision process. It has heen shown that CARS is a very usefull spectroscopic technique with sufficient sensitivity to be applied to the study of nonadiabatic collision processes. CARS was used for the first time to investigate these processes and gave the new interesting results shown above.
3

CARS untersuchung von energietransferprozessen am Na-H2- system

Cunha, Silvio Luiz Souza January 1986 (has links)
Der Energietransfer von elektronischer Energie in Schwingungs- und Rotationsenergie ist einer der elementarsten nichtadiabatischen Prozesse. Obwohl diese Prozesse seit langen untersucht werden, sind sie nicht im Detail verstanden. Das StoBsystem Na+H2 hat dabei Modellcharakter. Natrium ist ein Wasserstoffãhnliches Atom mit einem s-Elektron auf der auBersten Schale, und H2 ist das einfachste Molekül überhaupt. Ab initio Potentialflachen- Berechnungen sind deshalb mit guter Genauigkeit moglich und auch durchgef iihrt worden. Die elektronische Energie des Na-Atoms von 2,1eV wird dabei durch einen nichtadiabatischen Stoi3 in Schwingungs- und Rotationsenergie des H2-Moleküls iibertragen; ein Vorgang der auch als "Quenchen" bekannt ist. Von essentieller Bedeutung ist es, welche Schwingungs- und Rotationszustãnde besetzt werden. Es gab bisher keine experimentelle Untersuchung, bei der die interne Energieverteilung des H2-Moleküls direkt untersucht wurde. Der Grund dafür ist der, daB konventionelle Techniken zum Nachweis von H2 nicht geeignet sind. Aufgabe der vorliegenden Arbeit war es, erstmals CARS (Kohirente Antistokes-Raman-Streuung) für die oben genannten StoBprozesse einzusetzen und nachzuprüfen, wie gut sich diese Technik anwenden IãBt. CARS ist seit vielen Jahren bekannt, hat jedoch erst in der letzten Zeit durch die Entwicklung von intensiven gepulsten Laser mit geringer Bandbreite sehr an Bedeutung gewonnen. Insbesonders CARS an Wasserstoff wurde intensiv untersucht, nicht jedoch mit Beimischung von Natrium. Im vorliegenden Gasgemisch aus Natrium und H2 erzeugt Natrium durch seine energetisch sehr niedrigen elektronischen Zustãnde einen nichtresonanten Untergrund, der die Nachweis-Wahrscheinlichkeit so stark reduzieren kann, daí3 eine sinnvolle Anwendung nicht mehr mõglich sein konnte. Es ist gelungen zu zeigen, dali trotz eines enormen nichtresonanten Untergrundes eine sehr hohe Nachweiswahrscheinlichkeit mit CARS erzielt werden kann. Sie betrãgt für H2 mit Na im Grundzustand 1012 Teilchen pro cm3 und Quantenzustand und in Gegenwart von angeregtem Natrium 1013 Teilchen pro cm 3 und Quantenzustand. Mit der neu gebauten CARS-Apparatur wurde eine Reihe von neuen Experimenten durchgef a) Es konnte erstmals direkt die Schwingungsverteilung von H2 nach dem Quenchprozel3 bestimmt werden. Es konnte die absolute Besetzung der Schwingungszustãnde v=3,2 und 1 bestimmt werden. Eine Besetzung bei v=4 wurde nicht beobachtet. b) Mit einer zeitabhãngigen CARS-Messung konnte erstmalig die Schwingungsrelaxation der genannten Schwingungszustãnde gemessen und mit einem Ratengleichungsmodell die Ratenkonstanten mit sehr guter Obereinstimmung bestimmt werden. c) Aus der Besetzung der Schwingungszustãnde laBt sich ein absoluter Querschnitt für den Quenchprozei bestimmen. In Vergleich zu den klassischen Fluoreszenzmethoden wird dabei nicht die Abnahme der Fluoreszenz durch den StoBgasdruck bestimmt, sondern die direkte Besetzung des Quenchers nachgewiesen. Diese Methode wird erstmalig vorgestellt. Sie ist viel weniger empfindlich auf Verunreinigungen. Der erhaltene Wert für den Quenchquerschnitt betragt aq=12A2. d) Es laBt sich auch eine Aussage Uber die Rotationsbesetzung nach dem QuenchprozeB machen. Sie konnte bestimmt werden und ist nahezu thermisch, d.h. sie hat dieselbe Temperatur wie die Zelle. Dieses Ergebnis ist in übereinstimmung mit theoretische Modellen und bestãtigt die Vorstellung, dali das p-Orbital des angeregten Natriums sich bei Annãherung an das H2-Molekül ausrichtet und der QuenchprozeB vorwiegend in C2v -Symmetrie ablauft. Es ist gelungen zu zeigen, daB CARS sich erfolgreich für Untersuchungen an nichtadiabatischen StoBprozessen einsetzen laBt. Dadurch wurde erstmals erzielt. / Nonadiabatic collisions between atoms and molecules have drawn a large amount of attention in theoretical and experimental studies. In particular, the transfer of electronic energy of an atom to the vibrational, rotational and translational energy of a diatomic molecule (also called electronic quenching) can be considered an important fundamental process of this type and is thus extensively investigated. We study the Na + 112 as a model collision system for experimental and theoretical reasons since ab initio potential surfaces are currently available, enabling comparison of experimental results with theoretical calculations. We apply a new experimental technique in the field of nonadiabatic processes to obtain a more detailed understanding of these energy transfer processes. We use Coherent Anti-Stokes Raman Spectroscopy (CARS) to measure directly the internai energy distribution of H2 molecules produced by quenching of Na in the first excited state (3 2P112). Although CARS has been used to detect 112 among other species, it has never been applied to gaseous mixtures with H2 and atomic or molecular sodium. Sodium with its low lying electronic states produces a strong nonresonant background that strongly reduces the sensitivity of CARS. With a new constructed apparatus a sensitivity for H2 of 1012 particles per cm3 and quantum state in the presence of ground state sodium was achieved and 1013 particles per cm3 and quantum state with excited sodium. The following results were obtained: 1. The absolute population of vibrational leveis up to v=3 has been obtained and was found to be extremly nonthermal. The state distribution is, however, in good agreement with the available theoretical predictions. 2. With a time resolved CARS experiment we monitored the vibrational relaxation of these states. For this experiment we use excited sodium as an effective way to produce vibrationally hot hydrogen. With a simple model, we determined for the first time the vibrational relaxation time for v=3, 2 and 1 to be 2.4ps, 3.4ps and 31ps respectively. 3. From the measured absolute populations of the vibrational states of hydrogen the absolute cross section for the quenching process can be determined. This novel technique is not sensitive to impurities that also quench the electronic states of sodium very effectively. Our method involves only processes that produce vibrationally excited hydrogen. Due to the large vibrational spacing only H2 molecules that have undergone a quenching process are vibrationally excited. The cross section we determinei! is 12 cA'2, and is smaller than literature values due to the effect described. 4. We also measured the rotational distribution for different vibrational leveis. At the sensitivity limit of our apparatus the rotational distribution was estimated to be nearly thermal. This fact is also in good agreement with theoretical models for the collision process. It has heen shown that CARS is a very usefull spectroscopic technique with sufficient sensitivity to be applied to the study of nonadiabatic collision processes. CARS was used for the first time to investigate these processes and gave the new interesting results shown above.
4

Estudo do comportamento de descargas elétricas em misturas ar/metano

Crispim, Lucas Wilman da Silva 10 March 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-03-06T13:29:27Z No. of bitstreams: 1 lucaswilmandasilvacrispim.pdf: 4368508 bytes, checksum: dd17a101d7a17f37da33d9d15bac1645 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T20:22:46Z (GMT) No. of bitstreams: 1 lucaswilmandasilvacrispim.pdf: 4368508 bytes, checksum: dd17a101d7a17f37da33d9d15bac1645 (MD5) / Made available in DSpace on 2017-03-06T20:22:46Z (GMT). No. of bitstreams: 1 lucaswilmandasilvacrispim.pdf: 4368508 bytes, checksum: dd17a101d7a17f37da33d9d15bac1645 (MD5) Previous issue date: 2015-03-10 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este estudo tem como objetivo a modelagem numérica do efeito de descarga elétrica em misturas de ar e metano, considerando um modelo bidimensional que envolvem transferência de calor e de massa, além de um submodelo discreto de distribuição da energia das colisões eletrônicas entre as diversas espécies presentes na mistura. O domínio foi dividido em duas regiões, com e sem descarga eletrônica. Para a região de descarga são considerados efeitos das colisões com elétrons, químicos e de transferência de calor e de massa, para a região externa a descarga são considerados efeitos químicos, de transferência de calor e de massa. Foram simuladas quatro configurações diferentes de descarga em mistura representando ar seco e uma simulação de descarga em misturas de ar com metano. Neste trabalho considera-se o ar como fluido incompressível e composto por diversas espécies. Para encontrar a solução aproximada do modelo foi aplicado o método das diferenças finitas em um meio heterogêneo, foram também utilizadas estratégias numéricas para a separação de determinados termos nas equações, e por fim a resolução destes termos foram obtidas através da ferramenta de análise de plasma zero dimensional, ZDPlasKin. No domínio do tempo, foi utilizado o método de Euler, um esquema numérico explicito. Utilizou-se uma configuração para a descarga eletrônica de 10% para o regime de trabalho, e foram analisados dois tipos de misturas gasosas, uma representando uma mistura de N2 _ O2, e outra representando uma mistura de metano e ar. Foram analisados resultados referentes ao perfil de temperatura no domínio em diferentes instantes de tempo, além de analisar a variação temporal em diversas espécies contidas nas misturas, em determinados pontos do domínio. Devido ao alto custo de resolução de determinados termos das equações, foi utilizada uma estratégia de paralelização do tipo Mestre-Escravo na API (Application Programming Interface) de programação paralela MPI (Message Passing Interface). Foi observado através dos resultados o aquecimento e a difusão do calor da região de descarga para a região externa, e a difusão de espécies excitadas geradas na região de descarga para a região externa. Conseguiu-se observar nos resultados o aquecimento da região externa devido a condução do calor e a difusão de espécies geradas na região de descarga que saem por difusão para região externa, e esta migração contribuiu para o aquecimento da região externa, uma vez que estas espécies tendem a relaxação na região externa a descarga. / This study aims the numerical modeling of electrical discharge in mixtures of air and methane, considering a two-dimensional model that involves a heat mass transfer, besides a discrete submodel of electronic distribution of collisions among several species in the mixture. The domain was divided into two regions, with and without discharge. The discharge region considers the effect of collisions with electrons, heat and mass transfer and chemical effects. Four simulations sets of discharge in mixture with dry air and another mixture with air and methane were executed. This study considers the air as incompressible formed by several species. To find the solution of the mathematical model, the finite difference method in a heterogeneous medium was applied; in addition, numerical techniques to split some operators of the equation were also adopted. Finally, the approximate solution of these models were obtained by a zero dimensional plasma analysis tool, ZDPlasKin. In the time domain, the Euler method, an explicit numerical scheme, was used. The electronic discharge was set 10% to the work scheme; and two types of gas mixture were analyzed, one representing a mixture of N2 _ O2 and another with methane and air. Results referring to the temperature profile in the domain in different time steps were analyzed, as well as the temporal variation of several species contained in the mixtures in some points of the domain. Due to the high computational cost demanded to solve some equation terms, a master-slave parallelization strategy through MPI (Message Passing Interface), a parallel programming API (Application Programming Interface) was used. The results ilustrated the heating and heat diffusion from discharge region to external region, and the diffusion of excited species generated from the discharge region to external region. The heating in external region occurred due to heat conduction and species diffusion generated in the discharge region (that diffunding through external region). This migration contributed to the heating of external region, since these species tending to de-excitation in region out of discharge.
5

Modelagem matemática e simulação de um permeador de gases para separação de CO2 de gás natural. / Mathematical modelling and simulation of a permeator of gas for separation of CO2 and natural gas.

Crivellari, Gabriel Pereira 20 October 2016 (has links)
A produção de petróleo no pré-sal pode ser associada a contaminantes como o CO2. As plataformas instaladas neste polo possuem o sistema de remoção de CO2 usando permeação em membrana polimérica, que separa a corrente de gás em uma pobre em CO2 e outra rica neste. Este trabalho propõe um modelo para simulação da separação de gases utilizando permeador de gases do tipo espiral em contra-corrente. Este modelo utiliza equações baseadas em fenômenos de transporte e termodinâmica, tais como: comportamento real dos gases, variação da permeância com temperatura, transferência de calor dentro do equipamento e efeito Joule-Thomson. A validação foi feita utilizando dados da literatura para separações isotérmicas e dados obtidos em permeador instalado em plataforma de petróleo. Utilizou-se metodologia de reconciliação de dados e agrupamento para tratamento dos dados industriais, o que permitiu maior eficiência na reconciliação dos parâmetros do modelo. A partir da modelagem proposta determinaram-se os parâmetros de processos mais relevantes, permitindo a simulação de condições operacionais diferentes das utilizadas na regressão e a verificação da influência da variação de cada uma das condições operacionais. / The production of oil in pre-salt field is associated with contaminants such as CO2. The rigs installed in this field have a CO2 removal system using permeation on polymer membrane, which separates the gas stream in a stream with low CO2 content and another one with high CO2 content. This paper proposes a model for simulation of gas separation using spiral type permeator of gases in countercurrent flow. This model uses equations based on transport and thermodynamic phenomena such as: real behavior of gases, permeance dependence with temperature, heat transfer inside the equipment and Joule-Thomson effect. The validation was performed using literature data for isothermal separations and data from permeator installed on the oil rig. Was used data reconciliation methodology and clusterization for treatment of industrial data, allowing more efficient reconciliation of the model parameters. From the proposed model were determined the most relevant process parameters, allowing the simulation of operating conditions different than those used in the regression and verification of the influence of the change of each of the operating conditions.
6

Modelagem matemática e simulação de um permeador de gases para separação de CO2 de gás natural. / Mathematical modelling and simulation of a permeator of gas for separation of CO2 and natural gas.

Gabriel Pereira Crivellari 20 October 2016 (has links)
A produção de petróleo no pré-sal pode ser associada a contaminantes como o CO2. As plataformas instaladas neste polo possuem o sistema de remoção de CO2 usando permeação em membrana polimérica, que separa a corrente de gás em uma pobre em CO2 e outra rica neste. Este trabalho propõe um modelo para simulação da separação de gases utilizando permeador de gases do tipo espiral em contra-corrente. Este modelo utiliza equações baseadas em fenômenos de transporte e termodinâmica, tais como: comportamento real dos gases, variação da permeância com temperatura, transferência de calor dentro do equipamento e efeito Joule-Thomson. A validação foi feita utilizando dados da literatura para separações isotérmicas e dados obtidos em permeador instalado em plataforma de petróleo. Utilizou-se metodologia de reconciliação de dados e agrupamento para tratamento dos dados industriais, o que permitiu maior eficiência na reconciliação dos parâmetros do modelo. A partir da modelagem proposta determinaram-se os parâmetros de processos mais relevantes, permitindo a simulação de condições operacionais diferentes das utilizadas na regressão e a verificação da influência da variação de cada uma das condições operacionais. / The production of oil in pre-salt field is associated with contaminants such as CO2. The rigs installed in this field have a CO2 removal system using permeation on polymer membrane, which separates the gas stream in a stream with low CO2 content and another one with high CO2 content. This paper proposes a model for simulation of gas separation using spiral type permeator of gases in countercurrent flow. This model uses equations based on transport and thermodynamic phenomena such as: real behavior of gases, permeance dependence with temperature, heat transfer inside the equipment and Joule-Thomson effect. The validation was performed using literature data for isothermal separations and data from permeator installed on the oil rig. Was used data reconciliation methodology and clusterization for treatment of industrial data, allowing more efficient reconciliation of the model parameters. From the proposed model were determined the most relevant process parameters, allowing the simulation of operating conditions different than those used in the regression and verification of the influence of the change of each of the operating conditions.

Page generated in 0.078 seconds