• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 24
  • 9
  • Tagged with
  • 66
  • 66
  • 42
  • 37
  • 24
  • 17
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estimation aveugle de chaînes de Markov cachées simples et doubles : Application au décodage de codes graphiques / Blind estimation of hidden and double Markov chain : Application to barcode decoding

Dridi, Noura 25 June 2012 (has links)
Depuis leur création, les codes graphiques constituent un outil d'identification automatique largement exploité en industrie. Cependant, les performances de lecture sont limitées par un flou optique et un flou de mouvement. L'objectif de la thèse est l'optimisation de lecture des codes 1D et 2D en exploitant des modèles de Markov cachés simples et doubles, et des méthodes d'estimation aveugles. En premier lieu, le système de lecture de codes graphiques est modélisé par une chaîne de Markov cachée, et des nouveaux algorithmes pour l'estimation du canal et la détection des symboles sont développés. Ils tiennent compte de la non stationnarité de la chaîne de Markov. De plus une méthode d'estimation de la taille du flou et de sa forme est proposée. La méthode utilise des critères de sélection permettant de choisir le modèle de dégradation le plus adéquat. Enfin nous traitons le problème de complexité qui est particulièrement important dans le cas d'un canal à mémoire longue. La solution proposée consiste à modéliser le canal à mémoire longue par une chaîne de Markov double. Sur la base de ce modèle, des algorithmes offrant un rapport optimisé performance-complexité sont présentés / Since its birth, the technology of barcode is well investigated for automatic identification. When reading, a barcode can be degraded by a blur , caused by a bad focalisation and/ or a camera movement. The goal of this thesis is the optimisation of the receiver of 1D and 2D barcode from hidden and double Markov model and blind statistical estimation approaches. The first phase of our work consists of modelling the original image and the observed one using Hidden Markov model. Then, new algorithms for joint blur estimation and symbol detection are proposed, which take into account the non-stationarity of the hidden Markov process. Moreover, a method to select the most relevant model of the blur is proposed, based on model selection criterion. The method is also used to estimate the blur length. Finally, a new algorithm based on the double Markov chain is proposed to deal with digital communication through a long memory channel. Estimation of such channel is not possible using the classical detection algorithms based on the maximum likelihood due to the prohibitive complexity. New algorithm giving good trade off between complexity and performance is provided
12

Mesure de la fragilité et détection de chutes pour le maintien à domicile des personnes âgées / Measure of frailty and fall detection for helping elderly people to stay at home

Dubois, Amandine 15 September 2014 (has links)
Le vieillissement de la population est un enjeu majeur pour les prochaines années en raison, notamment, de l'augmentation du nombre de personnes dépendantes. La question du maintien à domicile de ces personnes se pose alors, du fait de l'impossibilité pour les instituts spécialisés de les accueillir toutes et, surtout, de la volonté des personnes âgées de rester chez elles le plus longtemps possible. Or, le développement de systèmes technologiques peut aider à résoudre certains problèmes comme celui de la sécurisation en détectant les chutes, et de l'évaluation du degré d'autonomie pour prévenir les accidents. Plus particulièrement, nous nous intéressons au développement des systèmes ambiants, peu coûteux, pour l'équipement du domicile. Les caméras de profondeur permettent d'analyser en temps réel les déplacements de la personne. Nous montrons dans cette thèse qu'il est possible de reconnaître l'activité de la personne et de mesurer des paramètres de sa marche à partir de l'analyse de caractéristiques simples extraites des images de profondeur. La reconnaissance d'activité est réalisée à partir des modèles de Markov cachés, et permet en particulier de détecter les chutes et des activités à risque. Lorsque la personne marche, l'analyse de la trajectoire du centre de masse nous permet de mesurer les paramètres spatio-temporels pertinents pour l'évaluation de la fragilité de la personne. Ce travail a été réalisé sur la base d'expérimentations menées en laboratoire, d'une part, pour la construction des modèles par apprentissage automatique et, d'autre part, pour évaluer la validité des résultats. Les expérimentations ont montré que certains modèles de Markov cachés, développés pour ce travail, sont assez robustes pour classifier les différentes activités. Nous donnons, également dans cette thèse, la précision, obtenue avec notre système, des paramètres de la marche en comparaison avec un tapis actimètrique. Nous pensons qu'un tel système pourrait facilement être installé au domicile de personnes âgées, car il repose sur un traitement local des images. Il fournit, au quotidien, des informations sur l'analyse de l'activité et sur l'évolution des paramètres de la marche qui sont utiles pour sécuriser et évaluer le degré de fragilité de la personne. / Population ageing is a major issue for society in the next years, especially because of the increase of dependent people. The limits in specialized institutes capacity and the wish of the elderly to stay at home as long as possible explain a growing need for new specific at home services. Technologies can help securing the person at home by detecting falls. They can also help in the evaluation of the frailty for preventing future accidents. This work concerns the development of low cost ambient systems for helping the stay at home of elderly. Depth cameras allow analysing in real time the displacement of the person. We show that it is possible to recognize the activity of the person and to measure gait parameters from the analysis of simple feature extracted from depth images. Activity recognition is based on Hidden Markov Models and allows detecting at risk behaviours and falls. When the person is walking, the analysis of the trajectory of her centre of mass allows measuring gait parameters that can be used for frailty evaluation. This work is based on laboratory experimentations for the acquisition of data used for models training and for the evaluation of the results. We show that some of the developed Hidden Markov Models are robust enough for classifying the activities. We also evaluate de precision of the gait parameters measurement in comparison to the measures provided by an actimetric carpet. We believe that such a system could be installed in the home of the elderly because it relies on a local processing of the depth images. It would be able to provide daily information on the person activity and on the evolution of her gait parameters that are useful for securing her and evaluating her frailty
13

Analyse probabiliste, étude combinatoire et estimation paramétrique pour une classe de modèles de croissance de plantes avec développement stochastique

Loi, Cédric 31 May 2011 (has links) (PDF)
Dans cette thèse, nous nous intéressons à une classe particulière de modèles stochastique de croissance de plantes structure-fonction à laquelle appartient le modèle GreenLab. L'objectif est double. En premier lieu, il s'agit d'étudier les processus stochastiques sous-jacents à l'organogenèse. Un nouveau cadre de travail combinatoire reposant sur l'utilisation de grammaires formelles a été établi dans le but d'étudier la distribution des nombres d'organes ou plus généralement des motifs dans la structure des plantes. Ce travail a abouti à la mise en place d'une méthode symbolique permettant le calcul de distributions associées à l'occurrence de mots dans des textes générés aléatoirement par des L-systèmes stochastiques. La deuxième partie de la thèse se concentre sur l'estimation des paramètres liés au processus de création de biomasse par photosynthèse et de son allocation. Le modèle de plante est alors écrit sous la forme d'un modèle de Markov caché et des méthodes d'inférence bayésienne sont utilisées pour résoudre le problème.
14

Communication silencieuse: conversion de la parole chuchotée en parole claire

Tran, Viet-Anh 28 January 2010 (has links) (PDF)
La parole silencieuse ou murmurée est définie comme la production articulée de sons, avec très peu de vibration des cordes vocales dans le cas du chuchotement, et aucune vibration dans le cas du murmure, produite par les mouvements et les interactions des organes de la parole tels que la langue, le voile du palais, les lèvres, etc., dans le but d'éviter d'être entendue par plusieurs personnes. La parole silencieuse ou murmurée est utilisée généralement pour la communication privée et confidentielle ou peut être employée par les personnes présentant un handicap laryngé et qui ne peuvent pas parler normalement. Cependant, il est difficile d'employer directement la parole silencieuse (murmurée) pour la communication face à face ou avec un téléphone portable parce que le contenu linguistique et l'information paralinguistique dans le message prononcé sont dégradés fortement quand le locuteur murmure ou chuchote. Une piste récente de recherche est donc celle de la conversion de la parole silencieuse (ou murmurée) en voix claire afin d'avoir une voix plus intelligible et plus naturelle. Avec une telle conversion, des applications potentielles telles que la téléphonie silencieuse " ou des systèmes d'aides robustes pour les handicaps laryngés deviendraient envisageables. Notre travail dans cette thèse se concentre donc sur cette piste.
15

Sélection et contrôle de modes de déplacement pour un robot mobile autonome en environnements naturels

Peynot, Thierry 18 July 2006 (has links) (PDF)
Le déplacement entièrement autonome d'un robot mobile en environnements naturels est un problème encore loin d'être résolu. Il nécessite la mise en oeuvre de fonctionnalités permettant de réaliser le cycle perception/décision/action, que nous distinguons en deux catégories : navigation (perception et décision sur le mouvement à réaliser) et locomotion (réalisation du mouvement). Pour pouvoir faire face à la grande diversité de situations que le robot peut rencontrer en environnement naturel, il peut être primordial de disposer de plusieurs types de fonctionnalités complémentaires, constituant autant de modes de déplacement possibles. En effet, de nombreuses réalisations de ces derniers ont été proposées dans la littérature ces dernières années mais aucun ne peut prétendre permettre d'exécuter un déplacement autonome en toute situation. Par conséquent, il semble judicieux de doter un robot mobile d'extérieur de plusieurs modes de déplacement complémentaires. Dès lors, ce dernier doit également disposer de moyens de choisir en ligne le mode le plus approprié. Dans ce cadre, cette thèse propose une mise en oeuvre d'un tel système de sélection de mode de déplacement, réalisée à partir de deux types de données : une observation du contexte pour déterminer dans quel type de situation le robot doit réaliser son déplacement et une surveillance du comportement du mode courant, effectuée par des moniteurs, et qui influence les transitions vers d'autres modes lorsque le comportement du mode actuel est jugé non satisfaisant. Nous présentons donc : un formalisme probabiliste d'estimation du mode à appliquer, des modes de navigation et de locomotion exploités pour réaliser le déplacement autonome, une méthode de représentation qualitative du terrain (reposant sur l'évaluation d'une difficulté calculée après placement de la structure du robot sur un modèle numérique de terrain), et des moniteurs surveillant le comportement des modes de déplacement utilisés (évaluation de l 'efficacité de la locomotion par roulement, surveillance de l'attitude et de la configuration du robot...). Des résultats expérimentaux de ces éléments intégrés à bord de deux robots d'extérieur différents seront enfin présentés et discutés.
16

Mesure de la fragilité et détection de chutes pour le maintien à domicile des personnes âgées

Dubois, Amandine 15 September 2014 (has links) (PDF)
Le vieillissement de la population est un enjeu majeur pour les prochaines années en raison, notamment, de l'augmentation du nombre de personnes dépendantes. La question du maintien à domicile de ces personnes se pose alors, du fait de l'impossibilité pour les instituts spécialisés de les accueillir toutes et, surtout, de la volonté des personnes âgées de rester chez elles le plus longtemps possible. Or, le développement de systèmes technologiques peut aider à résoudre certains problèmes comme celui de la sécurisation en détectant les chutes, et de l'évaluation du degré d'autonomie pour prévenir les accidents. Plus particulièrement, nous nous intéressons au développement des systèmes ambiants, peu coûteux, pour l'équipement du domicile. Les caméras de profondeur permettent d'analyser en temps réel les déplacements de la personne. Nous montrons dans cette thèse qu'il est possible de reconnaître l'activité de la personne et de mesurer des paramètres de sa marche à partir de l'analyse de caractéristiques simples extraites des images de profondeur. La reconnaissance d'activité est réalisée à partir des modèles de Markov cachés, et permet en particulier de détecter les chutes et des activités à risque. Lorsque la personne marche, l'analyse de la trajectoire du centre de masse nous permet de mesurer les paramètres spatio-temporels pertinents pour l'évaluation de la fragilité de la personne. Ce travail a été réalisé sur la base d'expérimentations menées en laboratoire, d'une part, pour la construction des modèles par apprentissage automatique et, d'autre part, pour évaluer la validité des résultats. Les expérimentations ont montré que certains modèles de Markov cachés, développés pour ce travail, sont assez robustes pour classifier les différentes activités. Nous donnons, également dans cette thèse, la précision, obtenue avec notre système, des paramètres de la marche en comparaison avec un tapis actimètrique. Nous pensons qu'un tel système pourrait facilement être installé au domicile de personnes âgées, car il repose sur un traitement local des images. Il fournit, au quotidien, des informations sur l'analyse de l'activité et sur l'évolution des paramètres de la marche qui sont utiles pour sécuriser et évaluer le degré de fragilité de la personne.
17

Détection non supervisée d'évènements rares dans un flot vidéo : application à la surveillance d'espaces publics

Luvison, Bertrand 13 December 2010 (has links) (PDF)
Cette thèse est une collaboration entre le LAboratoire des Sciences et Matériaux pour l'Électronique et d'Automatique (LASMEA) de Clermont-Ferrand et le Laboratoire Vision et Ingénierie des Contenus (LVIC) du CEA LIST à Saclay. La première moitié de la thèse a été accomplie au sein de l'équipe ComSee (1) du LASMEA et la deuxième au LVIC. L'objectif de ces travaux est de concevoir un système de vidéo-assistance temps réel pour la détection d'évènements dans des scènes possiblement denses.La vidéosurveillance intelligente de scènes denses telles que des foules est particulièrement difficile, principalement à cause de leur complexité et de la grande quantité de données à traiter simultanément. Le but de cette thèse consiste à élaborer une méthode de détection d'évènements rares dans de telles scènes, observées depuis une caméra fixe. La méthode en question s'appuie sur l'analyse automatique de mouvement et ne nécessite aucune information à priori. Les mouvements nominaux sont déterminés grâce à un apprentissage statistique non supervisé. Les plus fréquemment observés sont considérés comme des évènements normaux. Une phase de classification permet ensuite de détecter les mouvements déviant trop du modèle statistique, pour les considérer comme anormaux. Cette approche est particulièrement adaptée aux lieux de déplacements structurés, tels que des scènes de couloirs ou de carrefours routiers. Aucune étape de calibration, de segmentation de l'image, de détection d'objets ou de suivi n'est nécessaire. Contrairement aux analyses de trajectoires d'objets suivis, le coût calculatoire de notre méthode est invariante au nombre de cibles présentes en même temps et fonctionne en temps réel. Notre système s'appuie sur une classification locale du mouvement de la scène, sans calibration préalable. Dans un premier temps, une caractérisation du mouvement est réalisée, soit par des méthodes classiques de flot optique, soit par des descripteurs spatio-temporels. Ainsi, nous proposons un nouveau descripteur spatio-temporel fondé sur la recherche d'une relation linéaire entre les gradients spatiaux et les gradients temporels en des zones où le mouvement est supposé uniforme. Tout comme les algorithmes de flot optique, ce descripteur s'appuie sur la contrainte d'illumination constante.Cependant en prenant en compte un voisinage temporel plus important, il permet une caractérisation du mouvement plus lisse et plus robuste au bruit. De plus, sa faible complexité calculatoire est bien adaptée aux applications temps réel. Nous proposons ensuite d'étudier différentes méthodes de classification : La première, statique, dans un traitement image par image, s'appuie sur une estimation bayésienne de la caractérisation du mouvement au travers d'une approche basée sur les fenêtres de Parzen. Cette nouvelle méthode est une variante parcimonieuse des fenêtres de Parzen. Nous montrons que cette approche est algorithmiquement efficace pour approximer de manière compacte et précise les densités de probabilité. La seconde méthode, basée sur les réseaux bayésiens, permet de modéliser la dynamique du mouvement. Au lieu de considérer ce dernier image par image, des séquences de mouvements sont analysées au travers de chaînes de Markov Cachées. Ajouté à cela, une autre contribution de ce manuscrit est de prendre en compte la modélisation du voisinage d'un bloc afin d'ajouter une cohérence spatiale à la propagation du mouvement. Ceci est réalisé par le biais de couplages de chaînes de Markov cachées.Ces différentes approches statistiques ont été évaluées sur des données synthétiques ainsi qu'en situations réelles, aussi bien pour la surveillance du trafic routier que pour la surveillance de foule.Cette phase d'évaluation permet de donner des premières conclusions encourageantes quant à la faisabilité de la vidéosurveillance intelligente d'espaces possiblement denses.
18

Modélisation spatio-temporelle à base de modèles de Markov cachés pour la prévision des changements en imagerie satellitaire : cas de la végétation et de l'urbain

Essid, Houcine 13 December 2012 (has links) (PDF)
Les séries temporelles d'images satellitaires sont une source d'information importante pour le suivi des changements spatio-temporels des surfaces terrestres. En outre, le nombre d'images est en augmentation constante. Pour les exploiter pleinement, des outils dédiés au traitement automatique du contenu informationnel sont développés. Néanmoins ces techniques ne satisfont pas complètement les géographes qui exploitent pourtant, de plus en plus couramment, les données extraites des images dans leurs études afin de prédire le futur. Nous proposons dans cette thèse, une méthodologie générique à base d'un modèle de Markov caché pour l'analyse et la prédiction des changements sur une séquence d'images satellitaires. Cette méthodologie présente deux modules : un module de traitement intégrant les descripteurs et les algorithmes classiquement utilisés en interprétation d'images, et un module d'apprentissage basé sur les modèles de Markov cachés. La performance de notre approche est évaluée par des essais d'interprétations des évènements spatio-temporels effectués sur plusieurs sites d'études. Les résultats obtenus permettront d'analyser et de prédire les changements issus des différentes séries temporelles d'images SPOT et LANDSAT pour l'observation des évènements spatio-temporels telle que l'expansion urbaine et la déforestation.
19

Masquage de pertes de paquets en voix sur IP / Packet loss concealment on voice over IP

Koenig, Lionel 28 January 2011 (has links)
Les communications téléphoniques en voix sur IP souffrent de la perte de paquets causée par les problèmes d'acheminement dus aux nœuds du réseau. La perte d'un paquet de voix induit la perte d'un segment de signal de parole (généralement 10ms par paquet perdu). Face à la grande diversité des codeurs de parole, nous nous sommes intéressés dans le cadre de cette thèse à proposer une méthode de masquage de pertes de paquets générique, indépendante du codeur de parole utilisé. Ainsi, le masquage de pertes de paquets est appliqué au niveau du signal de parole reconstruit, après décodage, s'affranchissant ainsi du codeur de parole. Le système proposé repose sur une modélisation classique de type « modèles de Markov cachés » afin de suivre l'évolution acoustique de la parole. À notre connaissance, une seule étude a proposé l'utilisation des modèles de Markov cachés dans ce cadre [4]. Toutefois, Rødbro a utilisé l'utilisation de deux modèles, l'un pour la parole voisée, l'autre pour les parties non voisées, posant ainsi le problème de la distinction voisée/non voisée. Dans notre approche, un seul modèle de Markov caché est mis en œuvre. Aux paramètres classiques (10 coefficients de prédiction linéaire dans le domaine cepstral (LPCC) et dérivées premières) nous avons adjoint un nouvel indicateur continu de voisement [1, 2]. La recherche du meilleur chemin avec observations manquantes conduit à une version modifiée de l'algorithme de Viterbi pour l'estimation de ces observations. Les différentes contributions (indice de voisement, décodage acoutico-phonétique et restitution du signal) de cette thèse sont évaluées [3] en terme de taux de sur et sous segmentation, taux de reconnaissance et distances entre l'observation attendue et l'observation estimée. Nous donnons une indication de la qualité de la parole au travers d'une mesure perceptuelle : le PESQ. / Packet loss due to misrouted or delayed packets in voice over IP leads to huge voice quality degradation. Packet loss concealment algorithms try to enhance the perceptive quality of the speech. The huge variety of vocoders leads us to propose a generic framework working directly on the speech signal available after decoding. The proposed system relies on one single "hidden Markov model" to model time evolution of acoustic features. An original indicator of continuous voicing is added to conventional parameters (Linear Predictive Cepstral Coefficients) in order to handle voiced/unvoiced sound. Finding the best path with missing observations leads to one major contribution: a modified version of the Viterbi algorithm tailored for estimating missing observations. All contributions are assessed using both perceptual criteria and objective metrics.
20

A Markovian approach to distributional semantics / Une approche Markovienne à la sémantique distributionnelle

Grave, Edouard 20 January 2014 (has links)
Cette thèse, organisée en deux parties indépendantes, a pour objet la sémantique distributionnelle et la sélection de variables. Dans la première partie, nous introduisons une nouvelle méthode pour l'apprentissage de représentations de mots à partir de grandes quantités de texte brut. Cette méthode repose sur un modèle probabiliste de la phrase, utilisant modèle de Markov caché et arbre de dépendance. Nous présentons un algorithme efficace pour réaliser l'inférence et l'apprentissage dans un tel modèle, fondé sur l'algorithme EM en ligne et la propagation de message approchée. Nous évaluons les modèles obtenus sur des taches intrinsèques, telles que prédire des jugements de similarité humains ou catégoriser des mots et deux taches extrinsèques~: la reconnaissance d'entités nommées et l'étiquetage en supersens. Dans la seconde partie, nous introduisons, dans le contexte des modèles linéaires, une nouvelle pénalité pour la sélection de variables en présence de prédicteurs fortement corrélés. Cette pénalité, appelée trace Lasso, utilise la norm trace des prédicteurs sélectionnés, qui est une relaxation convexe de leur rang, comme critère de complexité. Le trace Lasso interpole les normes $\ell_1$ et $\ell_2$. En particulier, lorsque tous les prédicteurs sont orthogonaux, il est égal à la norme $\ell_1$, tandis que lorsque tous les prédicteurs sont égaux, il est égal à la norme $\ell_2$. Nous proposons deux algorithmes pour calculer la solution du problème de régression aux moindres carrés regularisé par le trace Lasso et réalisons des expériences sur des données synthétiques. / This thesis, which is organized in two independent parts, presents work on distributional semantics and on variable selection. In the first part, we introduce a new method for learning good word representations using large quantities of unlabeled sentences. The method is based on a probabilistic model of sentence, using a hidden Markov model and a syntactic dependency tree. The latent variables, which correspond to the nodes of the dependency tree, aim at capturing the meanings of the words. We develop an efficient algorithm to perform inference and learning in those models, based on online EM and approximate message passing. We then evaluate our models on intrinsic tasks such as predicting human similarity judgements or word categorization, and on two extrinsic tasks: named entity recognition and supersense tagging. In the second part, we introduce, in the context of linear models, a new penalty function to perform variable selection in the case of highly correlated predictors. This penalty, called the trace Lasso, uses the trace norm of the selected predictors, which is a convex surrogate of their rank, as the criterion of model complexity. The trace Lasso interpolates between the $\ell_1$-norm and $\ell_2$-norm. In particular, it is equal to the $\ell_1$-norm if all predictors are orthogonal and to the $\ell_2$-norm if all predictors are equal. We propose two algorithms to compute the solution of least-squares regression regularized by the trace Lasso, and perform experiments on synthetic datasets to illustrate the behavior of the trace Lasso.

Page generated in 0.0481 seconds