Spelling suggestions: "subject:"modèles à facteurs"" "subject:"urodèles à facteurs""
1 |
Modèles à Facteurs Conditionnellement Hétéroscédastiques et à Structure Markovienne Cachée pour les Séries FinancièresSaidane, Mohamed 05 July 2006 (has links) (PDF)
Dans cette thèse nous proposons une nouvelle approche dans le cadre des modèles d'évaluation des actifs financiers permettant de tenir compte de deux aspects fondamentaux qui caractérisent la volatilité latente: co-mouvement des rendements financiers conditionnellement hétéroscédastiques et changement de régime. En combinant les modèles à facteurs conditionnellement hétéroscédastiques avec les modèles de chaîne de Markov cachés, nous dérivons un modèle multivarié localement linéaire et dynamique pour la segmentation et la prévision des séries financières. Nous considérons, plus précisément le cas où les facteurs communs suivent des processus GQARCH univariés. L'algorithme EM que nous avons développé pour l'estimation de maximum de vraisemblance et l'inférence des structures cachées est basé sur une version quasi-optimale du filtre de Kalman combinée avec une approximation de Viterbi. Les résultats obtenus sur des simulations, aussi bien que sur des séries financières sont prometteurs.
|
2 |
Construction et estimation de copules en grande dimension / Construction and estimation of high-dimensional copulasMazo, Gildas 17 November 2014 (has links)
Ces dernières décennies, nous avons assisté à l'émergence du concept de copule en modélisation statistique. Les copules permettent de faire une analyse séparée des marges et de la structure de dépendance induite par une distribution statistique. Cette séparation facilite l'incorporation de lois non gaussiennes, et en particulier la prise en compte des dépendances non linéaires entre les variables aléatoires. La finance et l'hydrologie sont deux exemples de sciences où les copules sont très utilisées. Cependant, bien qu'il existe beaucoup de familles de copules bivariées, le choix reste limité en plus grande dimension: la construction de copules multivariées/en grande dimension reste un problème ouvert aujourd'hui. Cette thèse présente trois contributions à la modélisation et à l'inférence de copules en grande dimension. Le premier modèle proposé s'écrit comme un produit de copules bivariées, où chaque copule bivariée se combine aux autres via un graphe en arbre. Elle permet de prendre en compte les différents degrés de dépendance entre les différentes paires. La seconde copule est un modèle à facteurs basé sur une classe nonparamétrique de copules bivariées. Elle permet d'obtenir un bon équilibre entre flexibilité et facilité d'utilisation. Cette thèse traite également de l'inférence paramétrique de copules dans le cas général, en établissant les propriétés asymptotiques d'un estimateur des moindres carrés pondérés basé sur les coefficients de dépendance. Les modèles et méthodes proposés sont appliqués sur des données hydrologiques (pluies et débits de rivières). / In the last decades, copulas have been more and more used in statistical modeling. Their popularity owes much to the fact that they allow to separate the analysis of the margins from the analysis of the dependence structure induced by the underlying distribution. This renders easier the modeling of non Gaussian distributions, and, in particular, it allows to take into account non linear dependencies between random variables. Finance and hydrology are two examples of scientific fields where the use of copulas is nowadays standard. However, while many bivariate families exist in the literature, multivariate/high dimensional copulas are much more difficult to construct. This thesis presents three contributions to copula modeling and inference, with an emphasis on high dimensional problems. The first model writes as a product of bivariate copulas and is underlain by a tree structure where each edge represents a bivariate copula. Hence, we are able to model different pairs with different dependence properties. The second one is a factor model built on a nonparametric class of bivariate copulas. It exhibits a good balance between tractability and flexibility. This thesis also deals with the parametric inference of copula models in general. Indeed, the asymptotic properties of a weighted least-squares estimator based on dependence coefficients are established. The models and methods have been applied to hydrological data (flow rates and rain falls).
|
3 |
Approche EM pour modèles multi-blocs à facteurs à une équation structurelle / EM estimation of a structural equation modelTami, Myriam 12 July 2016 (has links)
Les modèles d'équations structurelles à variables latentes permettent de modéliser des relations entre des variables observables et non observables. Les deux paradigmes actuels d'estimation de ces modèles sont les méthodes de moindres carrés partiels sur composantes et l'analyse de la structure de covariance. Dans ce travail, après avoir décrit les deux principales méthodes d'estimation que sont PLS et LISREL, nous proposons une approche d'estimation fondée sur la maximisation par algorithme EM de la vraisemblance globale d'un modèle à facteurs latents et à une équation structurelle. Nous en étudions les performances sur des données simulées et nous montrons, via une application sur des données réelles environnementales, comment construire pratiquement un modèle et en évaluer la qualité. Enfin, nous appliquons l'approche développée dans le contexte d'un essai clinique en cancérologie pour l'étude de données longitudinales de qualité de vie. Nous montrons que par la réduction efficace de la dimension des données, l'approche EM simplifie l'analyse longitudinale de la qualité de vie en évitant les tests multiples. Ainsi, elle contribue à faciliter l'évaluation du bénéfice clinique d'un traitement. / Structural equation models enable the modeling of interactions between observed variables and latent ones. The two leading estimation methods are partial least squares on components and covariance-structure analysis. In this work, we first describe the PLS and LISREL methods and, then, we propose an estimation method using the EM algorithm in order to maximize the likelihood of a structural equation model with latent factors. Through a simulation study, we investigate how fast and accurate the method is, and thanks to an application to real environmental data, we show how one can handly construct a model or evaluate its quality. Finally, in the context of oncology, we apply the EM approach on health-related quality-of-life data. We show that it simplifies the longitudinal analysis of quality-of-life and helps evaluating the clinical benefit of a treatment.
|
4 |
Méthodes de Bootstrap pour les modèles à facteursDjogbenou, Antoine A. 07 1900 (has links)
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram-
ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002)
sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables
macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di-
verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco-
nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents
extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen-
taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron.
Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées
pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le
futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée
de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves
et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild
bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux
de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches
comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation
sérielle dans les erreurs de régression.
Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles
de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo-
sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa
moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble
de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme
latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres-
sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction
d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous
permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des
hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à
des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il
prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre
une étude récente de Gonçalves et Perron (2014).
Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour
les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement
que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation,
la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour
l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la
validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par-
cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles.
L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et
l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un
large panel de données macroéconomiques et financières des États Unis, les facteurs fortement
correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif
pour les excès de rendement. / This thesis develops bootstrap methods for factor models which are now widely used for generating forecasts since the seminal paper of Stock and Watson (2002) on diffusion indices. These models allow the inclusion of a large set of macroeconomic and financial variables as predictors, useful to span various information related to economic agents. My thesis develops econometric tools that improves inference in factor-augmented regression models driven by few unobservable factors estimated from a large panel of observed predictors. It is subdivided into three complementary chapters. The two first chapters are joint papers with Sílvia Gonçalves and Benoit Perron.
In the first chapter, we study how bootstrap methods can be used to make inference in h-step forecasting models which generally involve serially correlated errors. It thus considers bootstrap inference in a factor-augmented regression context where the errors could potentially be serially correlated. This generalizes results in Gonçalves and Perron (2013) and makes the bootstrap applicable to forecasting contexts where the forecast horizon is greater than one. We propose and justify two residual-based approaches, a block wild bootstrap (BWB) and a dependent wild bootstrap (DWB). Our simulations document improvement in coverage rates of confidence intervals for the coefficients when using BWB or DWB relative to both asymptotic theory and the wild bootstrap when serial correlation is present in the regression errors.
The second chapter provides bootstrap methods for prediction intervals which allow relaxing the normality distribution assumption on innovations. We propose bootstrap prediction intervals for an observation h periods into the future and its conditional mean. We assume that these forecasts are made using a set of factors extracted from a large panel of variables. Because we treat these factors as latent, our forecasts depend both on estimated factors and
estimated regression coefficients. Under regularity conditions, Bai and Ng (2006) proposed the construction of asymptotic intervals under Gaussianity of the innovations. The bootstrap allows us to relax this assumption and to construct valid prediction intervals under more general conditions. Moreover, even under Gaussianity, the bootstrap leads to more accurate intervals in cases where the cross-sectional dimension is relatively small as it reduces the bias of the ordinary least squares estimator as shown in a recent paper by Gonçalves and Perron (2014).
The third chapter proposes two consistent model selection procedures for factor-augmented regressions in finite samples.We first demonstrate that the usual cross-validation is inconsistent, but that a generalization, leave-d-out cross-validation, selects the smallest basis of estimated factors for the space spanned by the true factors. The second proposed criterion is a generalization of the bootstrap approximation of the squared error of prediction of Shao (1996) to
factor-augmented regressions which we also show is consistent. Simulation evidence documents improvements in the probability of selecting the smallest set of estimated factors than the usually available methods. An illustrative empirical application that analyzes the relationship between expected stock returns and macroeconomic and financial factors extracted from a large panel of U.S. macroeconomic and financial data is conducted. Our new procedures select factors
that correlate heavily with interest rate spreads and with the Fama-French factors. These factors have strong predictive power for excess returns.
|
5 |
Inégalité, mobilité et hétérogénéité sur le marché du travail : Contribution Empiriques et MéthodiquesBonhomme, Stéphane 23 May 2006 (has links) (PDF)
Ce travail rassemble quatre essais consacrés à l'étude de l'hétérogénéité et des dynamiques individuelles sur le marché du travail. Le premier chapitre met en évidence le lien entre mobilité (inertie) et le degré de persistance des inégalités. Nous employons une méthode statistique simple et originale pour étudier les trajectoires individuelles de salaires, et l'appliquons à des données françaises couvrant la période 1990-2002. Nous trouvons que la récession du début des années 1990 a été associée à une augmentation des inégalités longitudinales.<br />Dans le deuxième chapitre nous étudions l'effet de la mobilité entre emplois sur les corrélations entre salaires et caractéristiques non salariales. Dans notre modèle, de fortes préférences pour ces caractéristiques ne se traduisent pas nécessairement en corrélations négatives si les frictions de mobilité sont importantes. Sur données européennes, nous estimons de fortes préférences pour certaines caractéristiques telles que le type de travail ou la sécurité de l'emploi, ainsi que des différentiels de salaires très faibles entre niveaux d'aménités.<br />Les chapitres 3 et 4 introduisent une méthode de modélisation de l'hétérogénéité inobservée : l'analyse en composantes indépendantes. Celle-ci diffère de l'analyse en composantes principales en ce que les facteurs ne sont pas supposés simplement non corrélés, mais statistiquement indépendants. Cette hypothèse permet d'identifier les facteurs de manière non ambigüe. Nous appliquons notre méthode à des données de salaires de l'éducation pour l'année 1995 en France. Nos résultats suggèrent une relation complexe et multidimensionnelle entre le niveau d'étude et son rendement sur le marché du travail.
|
6 |
Modèles à facteurs latents pour les études d'association écologique en génétique des populations / Latent factor models for ecological association studies in population geneticsFrichot, Eric 26 September 2014 (has links)
Nous introduisons un ensemble de modèles à facteurs latents dédié à la génomique du paysage et aux tests d'associations écologiques. Cela comprend des méthodes statistiques pour corriger des effets d'autocorrélation spatiale sur les cartes de composantes principales en génétique des populations (spFA), des méthodes pour estimer rapidement et efficacement les coefficients de métissage individuel à partir de matrices de génotypes de grande taille et évaluer le nombre de populations ancestrales (sNMF) et des méthodes pour identifier les polymorphismes génétiques qui montrent de fortes corrélations avec des gradients environnementaux ou avec des variables utilisées comme des indicateurs pour des pressions écologiques (LFMM). Nous avons aussi développé un ensemble de logiciels libres associés à ces méthodes, basés sur des programmes optimisés en C qui peuvent passer à l'échelle avec la dimension de très grand jeu de données, afin d'effectuer des analyses de structures de population et des cribles génomiques pour l'adaptation locale. / We introduce a set of latent factor models dedicated to landscape genomics and ecological association tests. It includes statistical methods for correcting principal component maps for effects of spatial autocorrelation (spFA); methods for estimating ancestry coefficients from large genotypic matrices and evaluating the number of ancestral populations (sNMF); and methods for identifying genetic polymorphisms that exhibit high correlation with some environmental gradient or with the variables used as proxies for ecological pressures (LFMM). We also developed a set of open source softwares associated with the methods, based on optimized C programs that can scale with the dimension of very large data sets, to run analyses of population structure and genome scans for local adaptation.
|
Page generated in 0.0663 seconds