• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • Tagged with
  • 13
  • 13
  • 8
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Déconvolution adaptative pour le contrôle non destructif par ultrasons / Adaptative deconvolution for ultrasonic non destructive testing

Carcreff, Ewen 28 November 2014 (has links)
Nous nous intéressons au contrôle non destructif par ultrasons des matériaux industriels. En pratique, les signaux réceptionnés par le transducteur ultrasonore sont analysés pour détecter les discontinuités de la pièce inspectée. L'analyse est néanmoins rendue difficile par l'acquisition numérique, les effets de la propagation ultrasonore et la superposition des échos lorsque les discontinuités sont proches. La déconvolution parcimonieuse est une méthode inverse qui permet d'aborder ce problème afin de localiser précisément les discontinuités. Ce procédé favorise les signaux parcimonieux, c'est à dire ne contenant qu'un faible nombre de discontinuités. Dans la littérature, la déconvolution est généralement abordée sous l'hypothèse d'un modèle invariant en fonction de la distance de propagation, modalité qui n'est pas appropriée ici car l'onde se déforme au cours de son parcours et en fonction des discontinuités rencontrées. Cette thèse développe un modèle et des méthodes associées qui visent à annuler les dégradations dues à l'instrumentation et à la propagation ultrasonore, tout en résolvant des problèmes de superposition d'échos. Le premier axe consiste à modéliser la formation du signal ultrasonore en y intégrant les phénomènes propres aux ultrasons. Cette partie permet de construire un modèle linéaire mais non invariant, prenant en compte l'atténuation et la dispersion. L'étape de modélisation est validée par des acquisitions avec des matériaux atténuants. La deuxième partie de cette thèse concerne le développement de méthodes de déconvolution efficaces pour ce problème, reposant sur la minimisation d'un critère des moindres carrés pénalisé par la pseudo-norme L0. Nous avons développé des algorithmes d'optimisation spécifiques, prenant en compte, d'une part, un modèle de trains d'impulsions sur-échantillonné par rapport aux données, et d'autre part le caractère oscillant des formes d'onde ultrasonores. En utilisant des données synthétiques et expérimentales, ces algorithmes associés à un modèle direct adapté aboutissent à de meilleurs résultats comparés aux approches classiques pour un coût de calcul maîtrisé. Ces algorithmes sont finalement appliqués à des cas concrets de contrôle non destructif où ils démontrent leur efficacité. / This thesis deals with the ultrasonic non destructive testing of industrial parts. During real experiments, the signals received by the acoustic transducer are analyzed to detect the discontinuities of the part under test. This analysis can be a difficult task due to digital acquisition, propagation effects and echo overlapping if discontinuities are close. Sparse deconvolution is an inverse method that aims to estimate the precise positions of the discontinuities. The underlying hypothesis of this method is a sparse distribution of the solution, which means there are a few number of discontinuities. In the literature, deconvolution is addressed by a linear time-invariant model as a function of propagation distance, which in reality does not hold.The purpose of this thesis is therefore to develop a model and associated methods in order to cancel the effects of acquisition, propagation and echo overlapping. The first part is focused on the direct model development. In particular, we build a linear time-variant model that takes into account dispersive attenuation. This model is validated with experimental data acquired from attenuative materials. The second part of this work concerns the development of efficient sparse deconvolution algorithms, addressing the minimization of a least squares criterion penalized by a L0 pseudo-norm. Specific algorithms are developed for up-sampled deconvolution, and more robust exploration strategies are built for data containing oscillating waveforms. By using synthetic and experimental data, we show that the developed methods lead to better results compared to standard approaches for a competitive computation time. The proposed methods are then applied to real non destructive testing problems where they confirm their efficiency.
12

Contributions à l'étude et à la reconnaissance automatique de la parole en Fongbe / Contributions to the study of automatic speech recognitionon Fongbe

Laleye, Frejus Adissa Akintola 10 December 2016 (has links)
L'une des difficultés d'une langue peu dotée est l'inexistence des services liés aux technologies du traitement de l'écrit et de l'oral. Dans cette thèse, nous avons affronté la problématique de l'étude acoustique de la parole isolée et de la parole continue en Fongbe dans le cadre de la reconnaissance automatique de la parole. La complexité tonale de l'oral et la récente convention de l'écriture du Fongbe nous ont conduit à étudier le Fongbe sur toute la chaîne de la reconnaissance automatique de la parole. En plus des ressources linguistiques collectées (vocabulaires, grands corpus de texte, grands corpus de parole, dictionnaires de prononciation) pour permettre la construction des algorithmes, nous avons proposé une recette complète d'algorithmes (incluant des algorithmes de classification et de reconnaissance de phonèmes isolés et de segmentation de la parole continue en syllabe), basés sur une étude acoustique des différents sons, pour le traitement automatique du Fongbe. Dans ce manuscrit, nous avons aussi présenté une méthodologie de développement de modèles accoustiques et de modèles du langage pour faciliter la reconnaissance automatique de la parole en Fongbe. Dans cette étude, il a été proposé et évalué une modélisation acoustique à base de graphèmes (vu que le Fongbe ne dispose pas encore de dictionnaire phonétique) et aussi l'impact de la prononciation tonale sur la performance d'un système RAP en Fongbe. Enfin, les ressources écrites et orales collectées pour le Fongbe ainsi que les résultats expérimentaux obtenus pour chaque aspect de la chaîne de RAP en Fongbe valident le potentiel des méthodes et algorithmes que nous avons proposés. / One of the difficulties of an unresourced language is the lack of technology services in the speech and text processing. In this thesis, we faced the problematic of an acoustical study of the isolated and continous speech in Fongbe as part of the speech recognition. Tonal complexity of the oral and the recent agreement of writing the Fongbe led us to study the Fongbe throughout the chain of an automatic speech recognition. In addition to the collected linguistic resources (vocabularies, large text and speech corpus, pronunciation dictionaries) for building the algorithms, we proposed a complete recipe of algorithms (including algorithms of classification and recognition of isolated phonemes and segmentation of continuous speech into syllable), based on an acoustic study of the different sounds, for Fongbe automatic processing. In this manuscript, we also presented a methodology for developing acoustic models and language models to facilitate speech recognition in Fongbe. In this study, it was proposed and evaluated an acoustic modeling based on grapheme (since the Fongbe don't have phonetic dictionary) and also the impact of tonal pronunciation on the performance of a Fongbe ASR system. Finally, the written and oral resources collected for Fongbe and experimental results obtained for each aspect of an ASR chain in Fongbe validate the potential of the methods and algorithms that we proposed.
13

Exploring variabilities through factor analysis in automatic acoustic language recognition / Exploration par l'analyse factorielle des variabilités de la reconnaissance acoustique automatique de la langue / Erforschung durch Faktor-Analysis der Variabilitäten der automatischen akustischen Sprachen-Erkennung

Verdet, Florian 05 September 2011 (has links)
La problématique traitée par la Reconnaissance de la Langue (LR) porte sur la définition découverte de la langue contenue dans un segment de parole. Cette thèse se base sur des paramètres acoustiques de courte durée, utilisés dans une approche d’adaptation de mélanges de Gaussiennes (GMM-UBM). Le problème majeur de nombreuses applications du vaste domaine de la re- problème connaissance de formes consiste en la variabilité des données observées. Dans le contexte de la Reconnaissance de la Langue (LR), cette variabilité nuisible est due à des causes diverses, notamment les caractéristiques du locuteur, l’évolution de la parole et de la voix, ainsi que les canaux d’acquisition et de transmission. Dans le contexte de la reconnaissance du locuteur, l’impact de la variabilité solution peut sensiblement être réduit par la technique d’Analyse Factorielle (Joint Factor Analysis, JFA). Dans ce travail, nous introduisons ce paradigme à la Reconnaissance de la Langue. Le succès de la JFA repose sur plusieurs hypothèses. La première est que l’information observée est décomposable en une partie universelle, une partie dépendante de la langue et une partie de variabilité, qui elle est indépendante de la langue. La deuxième hypothèse, plus technique, est que la variabilité nuisible se situe dans un sous-espace de faible dimension, qui est défini de manière globale.Dans ce travail, nous analysons le comportement de la JFA dans le contexte d’un dispositif de LR du type GMM-UBM. Nous introduisons et analysons également sa combinaison avec des Machines à Vecteurs Support (SVM). Les premières publications sur la JFA regroupaient toute information qui est amélioration nuisible à la tâche (donc ladite variabilité) dans un seul composant. Celui-ci est supposé suivre une distribution Gaussienne. Cette approche permet de traiter les différentes sortes de variabilités d’une manière unique. En pratique, nous observons que cette hypothèse n’est pas toujours vérifiée. Nous avons, par exemple, le cas où les données peuvent être groupées de manière logique en deux sous-parties clairement distinctes, notamment en données de sources téléphoniques et d’émissions radio. Dans ce cas-ci, nos recherches détaillées montrent un certain avantage à traiter les deux types de données par deux systèmes spécifiques et d’élire comme score de sortie celui du système qui correspond à la catégorie source du segment testé. Afin de sélectionner le score de l’un des systèmes, nous avons besoin d’un analyses détecteur de canal source. Nous proposons ici différents nouveaux designs pour engendrées de tels détecteurs automatiques. Dans ce cadre, nous montrons que les facteurs de variabilité (du sous-espace) de la JFA peuvent être utilisés avec succès pour la détection de la source. Ceci ouvre la perspective intéressante de subdiviser les5données en catégories de canal source qui sont établies de manière automatique. En plus de pouvoir s’adapter à des nouvelles conditions de source, cette propriété permettrait de pouvoir travailler avec des données d’entraînement qui ne sont pas accompagnées d’étiquettes sur le canal de source. L’approche JFA permet une réduction de la mesure de coûts allant jusqu’à généraux 72% relatives, comparé au système GMM-UBM de base. En utilisant des systèmes spécifiques à la source, suivis d’un sélecteur de scores, nous obtenons une amélioration relative de 81%. / Language Recognition is the problem of discovering the language of a spoken definitionutterance. This thesis achieves this goal by using short term acoustic information within a GMM-UBM approach.The main problem of many pattern recognition applications is the variability of problemthe observed data. In the context of Language Recognition (LR), this troublesomevariability is due to the speaker characteristics, speech evolution, acquisition and transmission channels.In the context of Speaker Recognition, the variability problem is solved by solutionthe Joint Factor Analysis (JFA) technique. Here, we introduce this paradigm toLanguage Recognition. The success of JFA relies on several assumptions: The globalJFA assumption is that the observed information can be decomposed into a universalglobal part, a language-dependent part and the language-independent variabilitypart. The second, more technical assumption consists in the unwanted variability part to be thought to live in a low-dimensional, globally defined subspace. In this work, we analyze how JFA behaves in the context of a GMM-UBM LR framework. We also introduce and analyze its combination with Support Vector Machines(SVMs).The first JFA publications put all unwanted information (hence the variability) improvemen tinto one and the same component, which is thought to follow a Gaussian distribution.This handles diverse kinds of variability in a unique manner. But in practice,we observe that this hypothesis is not always verified. We have for example thecase, where the data can be divided into two clearly separate subsets, namely datafrom telephony and from broadcast sources. In this case, our detailed investigations show that there is some benefit of handling the two kinds of data with two separatesystems and then to elect the output score of the system, which corresponds to the source of the testing utterance.For selecting the score of one or the other system, we need a channel source related analyses detector. We propose here different novel designs for such automatic detectors.In this framework, we show that JFA’s variability factors (of the subspace) can beused with success for detecting the source. This opens the interesting perspectiveof partitioning the data into automatically determined channel source categories,avoiding the need of source-labeled training data, which is not always available.The JFA approach results in up to 72% relative cost reduction, compared to the overall resultsGMM-UBM baseline system. Using source specific systems followed by a scoreselector, we achieve 81% relative improvement.

Page generated in 0.1188 seconds