Spelling suggestions: "subject:"model based."" "subject:"godel based.""
301 |
Adaptation of Model Transformation for Safety Analysis of IoT-based ApplicationsAbdulhamid, Alhassan, Kabir, Sohag, Ghafir, Ibrahim, Lei, Ci 05 September 2023 (has links)
Yes / The Internet of Things (IoT) paradigm has continued to provide valuable services across various domains. However, guaranteeing the safety assurance of the IoT system is increasingly becoming a concern. While the growing complexity of IoT design has brought additional safety requirements, developing safe systems remains a critical design objective. In earlier studies, a limited number of approaches have been proposed to evaluate the safety requirements of IoT systems through the generation of static safety artefacts based on manual processes. This paper proposes a model-based approach to the safety analysis of the IoT system. The proposed framework explores the expressiveness of UML/SysML graphical modelling languages to develop a dynamic fault tree (DFT) as an analysis artefact of the IoT system. The framework was validated using a hypothetical IoT-enabled Smart Fire Detection and Prevention System (SFDS). The novel framework can capture dynamic failure behaviour, often ignored in most model-based approaches. This effort complements the inherent limitations of existing manual static failure analysis of the IoT systems and, consequently, facilitates a viable safety analysis that increases public assurance in the IoT systems. / The full text of this accepted manuscript will be available at the end of the publisher's embargo: 11th Feb 2025
|
302 |
Model-Based Design of an Electric Powertrain Vehicle; Focus on Physical Modeling of Lithium-ion BatteriesGirard, Alex Thomas 19 August 2016 (has links)
Formula SAE (FSAE) vehicle systems are very complex. Understanding how subsystems effect the overall vehicle is essential for making design trade-offs. FSAE is a competitive environment. Teams need to have reliable and high performing vehicles to do well in competition. The Virginia Tech (VT) FSAE team has produced a prototype electric powertrain (EPT) vehicle, VTM16e, and will take their first EPT vehicle, VTM17e, to competition in 2017.
The use of model-based design (MBD) for an EPT FSAE vehicle is investigated through this thesis. The goal of the research is to build the framework of a full vehicle simulation to take knowledge gained from the VTM16e prototype vehicle, and apply it to the VTM17e competition vehicle.
A top-down, bottom-up approach is taken to build a full vehicle model of an EPT FSAE vehicle. A full vehicle simulation is built with subsystems to establish an overall structure and subsystem interactions. Individual subsystems are then focused on for testing and validation. Breaking the vehicle down into subsystems allows the overall model to be incrementally improved. The battery subsystem is focused on in this thesis. Extensive testing is performed on the batteries to characterize their performance. Computer models are generated from empirical data through parameter estimation techniques. Validation of the battery models is performed and the resulting model is incorporated into the overall vehicle model. Performance limits of the vehicle are determined through model exploration, and design modifications to increase the reliability and performance for the VTM17e vehicle are proposed. / Master of Science
|
303 |
Reverse Engineering End-user Developed Web Applications into a Model-based FrameworkBhardwaj, Yogita 16 June 2005 (has links)
The main goal of this research is to facilitate end-user and expert developer collaboration in the creation of a web application. This research created a reverse engineering toolset and integrated it with Click (Component-based Lightweight Internet-application Construction Kit), an end-user web development tool. The toolset generates artifacts to facilitate collaboration between end-users and expert web developers when the end-users need to go beyond the limited capabilities of Click. By supporting smooth transition of workflow to expert web developers, we can help them in implementing advanced functionality in end-user developed web applications. The four artifacts generated include a sitemap, text documentation, a task model, and a canonical representation of the user interface. The sitemap is automatically generated to support the workflow of web developers. The text documentation of a web application is generated to document data representation and business logic. A task model, expressed using ConcurTaskTrees notation, covers the whole interaction specified by the end-user. A presentation and dialog model, represented in User Interface Markup Language (UIML), describe the user interface in a declarative language. The task model and UIML representation are created to support development of multi-platform user interfaces from an end-user web application. A formative evaluation of the usability of these models and representations with experienced web developers revealed that these representations were useful and easy to understand. / Master of Science
|
304 |
APECS: A Polychrony based End-to-End Embedded System Design and Code SynthesisAnderson, Matthew Eric 19 May 2015 (has links)
The development of high integrity embedded systems remains an arduous and error-prone task, despite the efforts by researchers in inventing tools and techniques for design automation. Much of the problem arises from the fact that the semantics of the modeling languages for the various tools, are often distinct, and the semantics gaps are often filled manually through the engineer's understanding of one model or an abstraction. This provides an opportunity for bugs to creep in, other than standardizing software engineering errors germane to such complex system engineering. Since embedded systems applications such as avionics, automotive, or industrial automation are safety critical, it is very important to invent tools, and methodologies for safe and reliable system design. Much of the tools, and techniques deal with either the design of embedded platforms (hardware, networking, firmware etc), and software stack separately. The problem of the semantic gap between these two, as well as between models of computation used to capture semantics must be solved in order to design safer embedded systems.
In this dissertation we propose a methodology for the end-to-end modeling and analysis of safety-critical embedded systems. Our approach consists of formal platform modeling, and analysis; formal application modeling; and 'correct-by-construction' code synthesis with the aim of bridging semantic gaps between the various abstractions and models required for the end-to-end system design. While the platform modeling language AADL has formal semantics, and analysis tools for real-time, and performance verification, the application behavior modeling in AADL is weak and part of an annex. In our work, we create the APECS (AADL and Polychrony based Embedded Computing Synthesis) methodology to allow an embedded system design specification all the way from platform architecture and platform components, the real-time behavior, non-functional properties, as well as the application software modeling. Our main contribution is to integrate a polychronous application software modeling language, and synthesis algorithms in order for synthesis of the embedded software running on the target platform, with the required constraints being met. We believe that a polychronous approach is particularly well suited for a multiprocessor/multi-controller distributed platform where different components often operate at independent rates and concurrently. Further, the use of a formal polychronous language will allow for formal validation of the software prior to code generation. We present a prototype framework that implements this approach, which we refer to as the AADL and Polychrony based Embedded Computing System (APECS). Our prototype utilizes an extended version of Ocarina to provide code generation for the AADL model. Our polychronous modeling language is MRICDF. Our prototype extends Ocarina to support software specification in MRICDF and generate multi-threaded software. Additionally, we implement an automated translation from Simulink to MRICDF, allowing designers to benefit from its formal semantics and exploit engineers' familiarity with Simulink tools, and legacy models. We present case studies utilizing APECS to implement safety critical systems both natively in MRICDF and in Simulink through automated translation. / Ph. D.
|
305 |
An Operational Concept of an IoT System for the Palletized Distribution Supply ChainNavarro Navarro, Nicolas Dario 23 September 2020 (has links)
In recent years, Internet-of-Things technology (IoT) has been the subject of research in a diverse field of applications, given its essential role in transitioning society towards a more interconnected paradigm of conducting manufacturing, logistics, services, and business, what is also known as Industry 4.0. Consistent with this line of research, this project addresses the application of IoT in distribution packaging as a way to better understand supply chain conditions.
Specifically, this work presents an operational concept for a system that implements IoT technology in the pallets that are used to move products along supply chains and serve as a vehicle to gain insight into the conditions experienced by products and unit loads. The development of this operational concept leverages a systems engineering framework to discover user needs, and stakeholders, and apply model-based systems engineering to create system models that capture expected system behavior and the outputs necessary to create value for the user.
A semi structured interview was conducted with eleven companies in order to discover user needs related to their packaging during distribution processes in their supply chain. A system operational concept was developed through use cases, concept of operations, and formal modeling using Cameo System Modeling Software. A review of sensor and communication technologies is presented, as well as a description of the challenges and future research opportunities for the proposed operational concept in distribution packaging.
The application of systems engineering framework, and model-based systems engineering to the distribution packaging domain brings clarity to problem formulation in order to lay-out solid value propositions for the adoption of IoT technologies, and to ensure successful realization of systems that achieve customer satisfaction.
This work offers three main contributions. First, it provides an identification and description of the needs that industrial companies have in relation to their product and packaging performance during distribution operations. Secondly, it shows how a systems-based approach, leveraging on model-based systems engineering can be employed to conceptualize systems that use innovative technologies like IoT in the domain of distribution packaging. Third, it provides an overview of open research challenges and practical considerations for the implementation of IoT technology in the field of distribution packaging. / Master of Science / In 2007, The World Bank published a study which states that "eighty percent of US trade is carried on pallets" (Raballand and Aldaz-Carroll, 2007). Furthermore, in the year 2015, a report estimated that there would be 2.6 billion pallets circulating in the United States by the year 2017 (Freedonia Group, 2015). Pallets are ubiquitous and a key component of distribution operations in supply chains, as they transport goods, and are the main interface that connects material handling equipment and packaged products (White and Hamner, 2005). Based on that distinctive characteristic, this study contends that pallet can be used as a window to gain insight into the realities of what is experienced by products and packaging during distribution. This can be done by using sensors imbedded in pallets to capture data of interest about the physical conditions in the supply chains, which opens the potential for more customized and optimized packaging design, supported by more reliable and representative information. This idea is particularly relevant, as established protocols for packaging testing are limited in their capacity to accurately simulate the real-world conditions that occur in the supply chain. This has resulted in suboptimal packaging design (Rouillard, 2008) that decreases the efficiency of logistics operations.
This study found that industrial companies are most concerned with avoiding damage that their products can suffer during transportation as a result of temperature, relative humidity, shock, and vibration. Thus, it is necessary to gather data about these distribution parameters for product shipments. Using a model-based system engineering approach, an operational concept is proposed to show what is needed from a system to be able to track these parameters. Furthermore, a review of current available technology for IoT is presented, as well as an examination of the challenges posed to the realization of the proposed operational concept, including factors like cybersecurity, and energy resources constraints.
This work offers three main contributions. First, it provides an identification and description of the needs that industrial companies have in relation to their product and packaging performance during distribution operations. Secondly, it shows how a systems-based approach, leveraging on model-based systems engineering can be employed to conceptualize systems that use innovative technologies like IoT in the domain of distribution packaging. Third, it provides an overview of open research challenges and practical considerations for the implementation of IoT technology in the field of distribution packaging.
|
306 |
ANNOTATION MECHANISMS TO MANAGE DESIGN KNOWLEDGE IN COMPLEX PARAMETRIC MODELS AND THEIR EFFECTS ON ALTERATION AND REUSABILITYDorribo Camba, Jorge 12 January 2015 (has links)
El proyecto de investigación propuesto se enmarca dentro del área de diseño de producto con aplicaciones de modelado sólido CAD/CAM (Computer Aided Design/Computer Aided Manufacturing). Concretamente, se pretende hacer un estudio de las herramientas de anotación asociativas disponibles en las aplicaciones comerciales de modelado CAD con el fin de analizar su uso, viabilidad, eficiencia y efectos en la modificación y reutilización de modelos digitales 3D, así como en la gestión y comunicación del conocimiento técnico vinculado al diseño.
La idea principal de esta investigación doctoral es establecer un método para representar y evaluar el conocimiento implícito de los ingenieros de diseño acerca de un modelo digital, así como la integración dinámica de dicho conocimiento en el propio modelo CAD, a través de anotaciones, con el objetivo de poder almacenar y comunicar eficientemente la mayor cantidad de información útil acerca del modelo, y reducir el tiempo y esfuerzo requeridos para su alteración y/o reutilización. / Dorribo Camba, J. (2014). ANNOTATION MECHANISMS TO MANAGE DESIGN KNOWLEDGE IN COMPLEX PARAMETRIC MODELS AND THEIR EFFECTS ON ALTERATION AND REUSABILITY [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/45997
|
307 |
Enhancing safety in IoT systems: A model-based assessment of a smart irrigation system using fault tree analysisAbdulhamid, Alhassan, Rahman, M.M., Kabir, Sohag, Ghafir, Ibrahim 20 August 2024 (has links)
Yes / The agricultural industry has the potential to undergo a revolutionary transformation with the use of Internet of Things (IoT) technology. Crop monitoring can be improved, waste reduced, and efficiency increased. However, there are risks associated with system failures that can lead to significant losses and food insecurity. Therefore, a proactive approach is necessary to ensure the effective safety assessment of new IoT systems before deployment. It is crucial to identify potential causes of failure and their severity from the conceptual design phase of the IoT system within smart agricultural ecosystems. This will help prevent such risks and ensure the safety of the system. This study examines the failure behaviour of IoT-based Smart Irrigation Systems (SIS) to identify potential causes of failure. This study proposes a comprehensive Model-Based Safety Analysis (MBSA) framework to model the failure behaviour of SIS and generate analysable safety artefacts of the system using System Modelling Language (SysML). The MBSA approach provides meticulousness to the analysis, supports model reuse, and makes the development of a Fault Tree Analysis (FTA) model easier, thereby reducing the inherent limitations of informal system analysis. The FTA model identifies component failures and their propagation, providing a detailed understanding of how individual component failures can lead to the overall failure of the SIS. This study offers valuable insights into the interconnectedness of various component failures by evaluating the SIS failure behaviour through the FTA model. This study generates multiple minimal cut sets, which provide actionable insights into designing dependable IoT-based SIS. This analysis identifies potential weak points in the design and provides a foundation for safety risk mitigation strategies. This study emphasises the significance of a systematic and model-driven approach to improving the dependability of IoT systems in agriculture, ensuring sustainable and safe implementation.
|
308 |
Digital Transformation: A Systematic Review of Its Relationship with Model-Based Systems Engineering and Andragogy to Support TrainingTincher, Brent Edward 07 1900 (has links)
Adopting model-based systems engineering (MBSE) tools signifies a shift in the complex nature of systems related to digital transformation. This study performs a comprehensive review and analysis to investigate organizational thinking toward training adult learners to use MBSE tools. Recognizing the wealth of experience and unique training needs characteristic of professionals, this study identifies and reflects on the prevalence of andragogy-based learning strategies to support future needs. By aligning MBSE tools with andragogy-based principles, this study seeks to contribute to the body of knowledge for both adult education and systems engineering, supporting a pathway for organizations to navigate and excel in a digitally transformed environment. This study found that organizations do not explicitly recommend a structured andragogy-based learning theory as a critical component to developing training for MBSE tools to support digital transformation. However, many of the principles ascribed to andragogy are commonly used by both organizations and researchers to promote MBSE training to adult learners. potential future development to further advance this work.
|
309 |
Towards an Integrated Approach to Verification and Model-Based Testing in System EngineeringLefticaru, Raluca, Konur, Savas, Yildirim, Unal, Uddin, Amad, Campean, Felician, Gheorghe, Marian 22 April 2017 (has links)
Yes / Engineering design in general and system design of embedded software have a direct impact on the final engineering product and the software implementation, respectively. Guaranteeing that the models utilised meet the specified requirements is beneficial in detecting misbehaviour and software flaws. This requires an integrated approach, combining verification and model-based testing methodology and notations and methods from system engineering and software engineering. In this paper, we propose a model-based approach integrating various notations utilised in the functional design of complex systems with formal verification and testing. We illustrate our approach on the cruise control system of an e-Bike case study.
|
310 |
Application of Permutation Genetic Algorithm for Sequential Model Building–Model Validation Design of ExperimentsKianifar, Mohammed R., Campean, Felician, Wood, Alastair S. 08 1900 (has links)
Yes / The work presented in this paper is motivated by a complex multivariate engineering problem associated with engine mapping experiments, which require efficient Design of Experiment (DoE) strategies to minimise expensive testing. The paper describes the development and evaluation of a Permutation Genetic Algorithm (PermGA) to support an exploration-based sequential DoE strategy for complex real-life engineering problems. A known PermGA was implemented to generate uniform OLH DoEs, and substantially extended to support generation of Model Building–Model Validation (MB-MV) sequences, by generating optimal infill sets of test points as OLH DoEs, that preserve good space filling and projection properties for the merged MB + MV test plan. The algorithm was further extended to address issues with non-orthogonal design spaces, which is a common problem in engineering applications. The effectiveness of the PermGA algorithm for the MB-MV OLH DoE sequence was evaluated through a theoretical benchmark problem based on the Six-Hump-Camel-Back (SHCB) function, as well as the Gasoline Direct Injection (GDI) engine steady state engine mapping problem that motivated this research. The case studies show that the algorithm is effective at delivering quasi-orthogonal space-filling DoEs with good properties even after several MB-MV iterations, while the improvement in model adequacy and accuracy can be monitored by the engineering analyst. The practical importance of this work, demonstrated through the engine case study, also is that significant reduction in the effort and cost of testing can be achieved. / The research work presented in this paper was funded by the UK Technology Strategy Board (TSB) through the Carbon Reduction through Engine Optimization (CREO) project.
|
Page generated in 0.0893 seconds