• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation and modeling of selected forest metrics with lidar and Landsat

Strunk, Jacob L. 14 June 2012 (has links)
Lidar is able to provide height and cover information which can be used to estimate selected forest attributes precisely. However, for users to evaluate whether the additional cost and complication associated with using Lidar merits adoption requires that the protocol to use lidar be thoroughly described and that a basis for selection of design parameters such as number of field plots and lidar pulse density be described. In our first analysis, we examine these issues by looking at the effects of pulse density and sample size on estimation when wall-to-wall lidar is used with a regression estimator. The effects were explored using resampling simulations. We examine both the effects on precision, and on the validity of inference. Pulse density had almost no effect on precision for the range examined, from 3 to .0625 pulses / m��. The effect of sample size on estimator precision was roughly in accordance with the behavior indicated by the variance estimator, except that for small samples the variance estimator had positive bias (the variance estimates were too small), compromising the validity of inference. In future analyses we plan to provide further context for wall-to-wall lidar-assisted estimation. While there is a lot of literature on modeling, there is limited information on how lidar-assisted approaches compare to existing methods, and what variables can or cannot be acquired, or may be acquired with reduced confidence. We expand our investigation of estimation in our second analysis by examining lidar obtained in a sampling mode in combination with Landsat. In this case we make inference about the feasibility of a lidar-assisted estimation strategy by contrasting its variance estimate with variance estimates from a variety of other sampling designs and estimators. Of key interest was how the precision of a two-stage estimator with lidar strips compared with a plot-only estimator from a simple random sampling design. We found that because the long and narrow lidar strips incorporate much of the landscape variability, if the number of lidar strips was increased from 7 to 15 strips, the precision of estimators with lidar can exceed that of estimators applied to plot-only SRS data for a much larger number of plots. Increasing the number of lidar strips is considered to be highly viable since the costs of field plots can be quite expensive in Alaska, often exceeding the cost of a lidar strip. A Landsat-assisted approach used for either an SRS or a two-stage sample was also found to perform well relative to estimators for plot-only SRS data. This proved beneficial when we combined lidar and Landsat-assisted regression estimators for two-stage designs using a composite estimator. The composite estimator yielded much better results than either estimator used alone. We did not assess the effects of changing the number of lidar strips in combination with using a composite estimator, but this is an important analysis we plan to perform in a future study. In our final analysis we leverage the synergy between lidar and Landsat to improve the explanatory power of auxiliary Landsat using a multilevel modeling strategy. We also incorporate a more sophisticated approach to processing Landsat which reflects temporal trends in individual pixels values. Our approach used lidar as an intermediary step to better match the spatial resolution of Landsat and increase the proportion of area overlapped between measurement units for the different sources of data. We developed two separate approaches for two different resolutions of data (30 m and 90 m) using multiple modeling alternatives including OLS and k nearest neighbors (KNN), and found that both resolution and the modeling approach affected estimates of residual variability, although there was no combination of model types which was a clear winner for all responses. The modeling strategies generally fared better for the 90 m approaches, and future analyses will examine a broader range of resolutions. Fortunately the approaches used are fairly flexible and there is nothing prohibiting a 1000 m implementation. In the future we also plan to look at using a more sophisticated Landsat time-series approach. The current approach essentially dampened the noise in the temporal trend for a pixel, but did not make use of information in the trend such as slope or indications of disturbance ��� which may provide additional explanatory power. In a future study we will also incorporate a multilevel modeling into estimation or mapping strategies and evaluate the contribution of the multilevel modeling strategy relative to alternate approaches. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from June 21, 2012 - Dec. 21, 2012
2

Estimation de synchrones de consommation électrique par sondage et prise en compte d'information auxiliaire / Estimate the mean electricity consumption curve by survey and take auxiliary information into account

Lardin, Pauline 26 November 2012 (has links)
Dans cette thèse, nous nous intéressons à l'estimation de la synchrone de consommation électrique (courbe moyenne). Etant donné que les variables étudiées sont fonctionnelles et que les capacités de stockage sont limitées et les coûts de transmission élevés, nous nous sommes intéressés à des méthodes d'estimation par sondage, alternatives intéressantes aux techniques de compression du signal. Nous étendons au cadre fonctionnel des méthodes d'estimation qui prennent en compte l'information auxiliaire disponible afin d'améliorer la précision de l'estimateur de Horvitz-Thompson de la courbe moyenne de consommation électrique. La première méthode fait intervenir l'information auxiliaire au niveau de l'estimation, la courbe moyenne est estimée à l'aide d'un estimateur basé sur un modèle de régression fonctionnelle. La deuxième l'utilise au niveau du plan de sondage, nous utilisons un plan à probabilités inégales à forte entropie puis l'estimateur de Horvitz-Thompson fonctionnel. Une estimation de la fonction de covariance est donnée par l'extension au cadre fonctionnel de l'approximation de la covariance donnée par Hájek. Nous justifions de manière rigoureuse leur utilisation par une étude asymptotique. Pour chacune de ces méthodes, nous donnons, sous de faibles hypothèses sur les probabilités d'inclusion et sur la régularité des trajectoires, les propriétés de convergence de l'estimateur de la courbe moyenne ainsi que de sa fonction de covariance. Nous établissons également un théorème central limite fonctionnel. Afin de contrôler la qualité de nos estimateurs, nous comparons deux méthodes de construction de bande de confiance sur un jeu de données de courbes de charge réelles. La première repose sur la simulation de processus gaussiens. Une justification asymptotique de cette méthode sera donnée pour chacun des estimateurs proposés. La deuxième utilise des techniques de bootstrap qui ont été adaptées afin de tenir compte du caractère fonctionnel des données / In this thesis, we are interested in estimating the mean electricity consumption curve. Since the study variable is functional and storage capacities are limited or transmission cost are high survey sampling techniques are interesting alternatives to signal compression techniques. We extend, in this functional framework, estimation methods that take into account available auxiliary information and that can improve the accuracy of the Horvitz-Thompson estimator of the mean trajectory. The first approach uses the auxiliary information at the estimation stage, the mean curve is estimated using model-assisted estimators with functional linear regression models. The second method involves the auxiliary information at the sampling stage, considering πps (unequal probability) sampling designs and the functional Horvitz-Thompson estimator. Under conditions on the entropy of the sampling design the covariance function of the Horvitz-Thompson estimator can be estimated with the Hájek approximation extended to the functional framework. For each method, we show, under weak hypotheses on the sampling design and the regularity of the trajectories, some asymptotic properties of the estimator of the mean curve and of its covariance function. We also establish a functional central limit theorem.Next, we compare two methods that can be used to build confidence bands. The first one is based on simulations of Gaussian processes and is assessed rigorously. The second one uses bootstrap techniques in a finite population framework which have been adapted to take into account the functional nature of the data
3

Estimation de synchrones de consommation électrique par sondage et prise en compte d'information auxiliaire

Lardin, Pauline 26 November 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à l'estimation de la synchrone de consommation électrique (courbe moyenne). Etant donné que les variables étudiées sont fonctionnelles et que les capacités de stockage sont limitées et les coûts de transmission élevés, nous nous sommes intéressés à des méthodes d'estimation par sondage, alternatives intéressantes aux techniques de compression du signal. Nous étendons au cadre fonctionnel des méthodes d'estimation qui prennent en compte l'information auxiliaire disponible afin d'améliorer la précision de l'estimateur de Horvitz-Thompson de la courbe moyenne de consommation électrique. La première méthode fait intervenir l'information auxiliaire au niveau de l'estimation, la courbe moyenne est estimée à l'aide d'un estimateur basé sur un modèle de régression fonctionnelle. La deuxième l'utilise au niveau du plan de sondage, nous utilisons un plan à probabilités inégales à forte entropie puis l'estimateur de Horvitz-Thompson fonctionnel. Une estimation de la fonction de covariance est donnée par l'extension au cadre fonctionnel de l'approximation de la covariance donnée par Hájek. Nous justifions de manière rigoureuse leur utilisation par une étude asymptotique. Pour chacune de ces méthodes, nous donnons, sous de faibles hypothèses sur les probabilités d'inclusion et sur la régularité des trajectoires, les propriétés de convergence de l'estimateur de la courbe moyenne ainsi que de sa fonction de covariance. Nous établissons également un théorème central limite fonctionnel. Afin de contrôler la qualité de nos estimateurs, nous comparons deux méthodes de construction de bande de confiance sur un jeu de données de courbes de charge réelles. La première repose sur la simulation de processus gaussiens. Une justification asymptotique de cette méthode sera donnée pour chacun des estimateurs proposés. La deuxième utilise des techniques de bootstrap qui ont été adaptées afin de tenir compte du caractère fonctionnel des données
4

Baigtinės populiacijos parametrų statistiniai įvertiniai, gauti naudojant papildomą informaciją / Statistical estimators of the finite population parameters in the presence of auxiliary information

Pumputis, Dalius 09 March 2009 (has links)
Disertacijoje nagrinėjamos papildomos informacijos panaudojimo galimybės konstruojant baigtinės populiacijos sumos, dispersijos ir kovariacijos įvertinius, bei sluoksniuojant baigtines populiacijas. Pirmiausia darbe sprendžiamas populiacijų sluoksniavimo uždavinys, kai tyrimo kintamojo skirstinys yra asimetrinis. Pasiūlomas naujas - pataisytasis geometrinis - sluoksniavimo metodas. Šis metodas modeliuojant lyginamas su trimis kitais žinomais metodais: kvadratinės šaknies iš skirstinio dažnio, geometriniu ir laipsninio sluoksniavimo metodu. Modeliavimo rezultatai rodo, kad vidutiniškai asimetrinėms populiacijoms geriausiai tinka laipsninio sluoksniavimo metodas, o ypač asimetrinėms populiacijoms geriausias yra pataisytasis geometrinis sluoksniavimas. Toliau nagrinėjami baigtinės populiacijos sumos kalibruotieji įvertiniai, sukonstruoti taikant skirtingas atstumo funkcijas. Modeliuojant tiriama šių įvertinių kokybė. Sukonstruoti nauji populiacijos kovariacijos kalibruotieji įvertiniai, naudojantys vieną, dvi ir tris svorių sistemas. Šie įvertiniai konstruojami pasirenkant skirtingas kalibravimo lygtis. Remiantis modeliais pagrįstų įvertinių teorija, čia taip pat sukonstruojamas pataisytasis tiesiniu regresiniu modeliu pagrįstas kalibruotasis populiacijos kovariacijos įvertinys. Modeliuojant įvertiniai lyginami tarpusavyje ir su standartiniais atitinkamų parametrų įvertiniais. Kalibruotieji įvertiniai yra kur kas tikslesni, jei tyrimo ir papildomų kintamųjų koreliacija yra... [toliau žr. visą tekstą] / The dissertation analyzes how to incorporate auxiliary information into the estimation of the finite population total, variance, covariance, and how to use it for the stratification of finite populations. First of all, the problem of efficient stratification in the case of skewed population is considered. A new adjusted geometric stratification method is introduced. This method is compared by simulation with the cumulative root frequency method, the geometric method, and the power method. The simulation results show that in most cases considered the power method is the most efficient one, but the adjusted geometric stratification method outperforms all the methods in the case of highly skewed populations. The calibrated estimators of finite population total, constructed using different distance functions, are considered. The quality of such estimators is analyzed by simulation. The new calibrated estimators of the finite population covariance (variance) are derived, using one or more weighting systems. Applying the model calibration theory, we construct here an adjusted linear regression model-assisted and calibrated estimator of the population covariance. The estimators derived are compared by simulation with the standard estimators of the respective parameters. The calibrated estimators of the population covariance are more efficient compared to the straight estimators provided the auxiliary variables are well correlated with the study variables. The problem of estimation... [to full text]
5

Statistical estimators of the finite population parameters in the presence of auxiliary information / Baigtinės populiacijos parametrų statistiniai įvertiniai, gauti naudojant papildomą informaciją

Pumputis, Dalius 09 March 2009 (has links)
The dissertation analyzes how to incorporate auxiliary information into the estimation of the finite population total, variance, covariance, and how to use it for the stratification of finite populations. First of all, the problem of efficient stratification in the case of skewed population is considered. A new adjusted geometric stratification method is introduced. This method is compared by simulation with the cumulative root frequency method, the geometric method, and the power method. The simulation results show that in most cases considered the power method is the most efficient one, but the adjusted geometric stratification method outperforms all the methods in the case of highly skewed populations. The calibrated estimators of finite population total, constructed using different distance functions, are considered. The quality of such estimators is analyzed by simulation. The new calibrated estimators of the finite population covariance (variance) are derived, using one or more weighting systems. Applying the model calibration theory, we construct here an adjusted linear regression model-assisted and calibrated estimator of the population covariance. The estimators derived are compared by simulation with the standard estimators of the respective parameters. The calibrated estimators of the population covariance are more efficient compared to the straight estimators provided the auxiliary variables are well correlated with the study variables. The problem of estimation... [to full text] / Disertacijoje nagrinėjamos papildomos informacijos panaudojimo galimybės konstruojant baigtinės populiacijos sumos, dispersijos ir kovariacijos įvertinius, bei sluoksniuojant baigtines populiacijas. Pirmiausia darbe sprendžiamas populiacijų sluoksniavimo uždavinys, kai tyrimo kintamojo skirstinys yra asimetrinis. Pasiūlomas naujas - pataisytasis geometrinis - sluoksniavimo metodas. Šis metodas modeliuojant lyginamas su trimis kitais žinomais metodais: kvadratinės šaknies iš skirstinio dažnio, geometriniu ir laipsninio sluoksniavimo metodu. Modeliavimo rezultatai rodo, kad vidutiniškai asimetrinėms populiacijoms geriausiai tinka laipsninio sluoksniavimo metodas, o ypač asimetrinėms populiacijoms geriausias yra pataisytasis geometrinis sluoksniavimas. Toliau nagrinėjami baigtinės populiacijos sumos kalibruotieji įvertiniai, sukonstruoti taikant skirtingas atstumo funkcijas. Modeliuojant tiriama šių įvertinių kokybė. Sukonstruoti nauji populiacijos kovariacijos kalibruotieji įvertiniai, naudojantys vieną, dvi ir tris svorių sistemas. Šie įvertiniai konstruojami pasirenkant skirtingas kalibravimo lygtis. Remiantis modeliais pagrįstų įvertinių teorija, čia taip pat sukonstruojamas pataisytasis tiesiniu regresiniu modeliu pagrįstas kalibruotasis populiacijos kovariacijos įvertinys. Modeliuojant įvertiniai lyginami tarpusavyje ir su standartiniais atitinkamų parametrų įvertiniais. Kalibruotieji įvertiniai yra kur kas tikslesni, jei tyrimo ir papildomų kintamųjų koreliacija yra... [toliau žr. visą tekstą]
6

Pénalisation et réduction de la dimension des variables auxiliaires en théorie des sondages / Penalization and data reduction of auxiliary variables in survey sampling

Shehzad, Muhammad Ahmed 12 October 2012 (has links)
Les enquêtes par sondage sont utiles pour estimer des caractéristiques d'une populationtelles que le total ou la moyenne. Cette thèse s'intéresse à l'étude detechniques permettant de prendre en compte un grand nombre de variables auxiliairespour l'estimation d'un total.Le premier chapitre rappelle quelques définitions et propriétés utiles pour lasuite du manuscrit : l'estimateur de Horvitz-Thompson, qui est présenté commeun estimateur n'utilisant pas l'information auxiliaire ainsi que les techniques decalage qui permettent de modifier les poids de sondage de facon à prendre encompte l'information auxiliaire en restituant exactement dans l'échantillon leurstotaux sur la population.Le deuxième chapitre, qui est une partie d'un article de synthèse accepté pourpublication, présente les méthodes de régression ridge comme un remède possibleau problème de colinéarité des variables auxiliaires, et donc de mauvais conditionnement.Nous étudions les points de vue "model-based" et "model-assisted" dela ridge regression. Cette technique qui fournit de meilleurs résultats en termed'erreur quadratique en comparaison avec les moindres carrés ordinaires peutégalement s'interpréter comme un calage pénalisé. Des simulations permettentd'illustrer l'intérêt de cette technique par compar[a]ison avec l'estimateur de Horvitz-Thompson.Le chapitre trois présente une autre manière de traiter les problèmes de colinéaritévia une réduction de la dimension basée sur les composantes principales. Nousétudions la régression sur composantes principales dans le contexte des sondages.Nous explorons également le calage sur les moments d'ordre deux des composantesprincipales ainsi que le calage partiel et le calage sur les composantes principalesestimées. Une illustration sur des données de l'entreprise Médiamétrie permet deconfirmer l'intérêt des ces techniques basées sur la réduction de la dimension pourl'estimation d'un total en présence d'un grand nombre de variables auxiliaires / Survey sampling techniques are quite useful in a way to estimate population parameterssuch as the population total when the large dimensional auxiliary data setis available. This thesis deals with the estimation of population total in presenceof ill-conditioned large data set.In the first chapter, we give some basic definitions that will be used in thelater chapters. The Horvitz-Thompson estimator is defined as an estimator whichdoes not use auxiliary variables. Along with, calibration technique is defined toincorporate the auxiliary variables for sake of improvement in the estimation ofpopulation totals for a fixed sample size.The second chapter is a part of a review article about ridge regression estimationas a remedy for the multicollinearity. We give a detailed review ofthe model-based, design-based and model-assisted scenarios for ridge estimation.These estimates give improved results in terms of MSE compared to the leastsquared estimates. Penalized calibration is also defined under survey sampling asan equivalent estimation technique to the ridge regression in the classical statisticscase. Simulation results confirm the improved estimation compared to theHorvitz-Thompson estimator.Another solution to the ill-conditioned large auxiliary data is given in terms ofprincipal components analysis in chapter three. Principal component regression isdefined and its use in survey sampling is explored. Some new types of principalcomponent calibration techniques are proposed such as calibration on the secondmoment of principal component variables, partial principal component calibrationand estimated principal component calibration to estimate a population total. Applicationof these techniques on real data advocates the use of these data reductiontechniques for the improved estimation of population totals
7

Nouvelle méthodologie générique permettant d’obtenir la probabilité de détection (POD) robuste en service avec couplage expérimental et numérique du contrôle non destructif (CND) / New generic methodology to obtain robust In-Service Probability Of Detection (POD) coupling experimental and numerical simulation of Non-Destructive Test (NDT)

Reseco Bato, Miguel 17 May 2019 (has links)
L’évaluation des performances des procédures de Contrôle Non Destructifs (CND) en aéronautique est une étape clé dans l’établissement du dossier de certification de l’avion. Une telle démonstration de performances est faite à travers l’établissement de probabilités de détection (Probability Of Detection – POD), qui intègrent l’ensemble des facteurs influents et sources d’incertitudes inhérents à la mise en œuvre de la procédure. Ces études, basées sur des estimations statistiques faites sur un ensemble représentatif d’échantillons, reposent sur la réalisation d’un grand nombre d’essais expérimentaux (un minimum de 60 échantillons contenant des défauts de différentes tailles, qui doivent être inspectés par au moins 3 opérateurs [1]), afin de recueillir un échantillon suffisant pour une estimation statistique pertinente. Le coût financier associé est élevé, parfois prohibitif, et correspond majoritairement à la mise en œuvre des maquettes servant aux essais. Des travaux récents [2-5] ont fait émerger une approche de détermination de courbes POD utilisant la simulation des CND, notamment avec le logiciel CIVA. L’approche, dite de propagation d’incertitudes, consiste à : - Définir une configuration nominale d’inspection, - Identifier l’ensemble des paramètres influents susceptibles de varier dans l’application de la procédure, - Caractériser les incertitudes liées à ces paramètres par des lois de probabilités, - Réaliser un grand nombre de simulations par tirage aléatoire des valeurs prises par les paramètres variables selon les lois de probabilités définies. Le résultat de cet ensemble de simulations constitue enfin la base de données utilisée pour l’estimation des POD. Cette approche réduit de façon très importante les coûts d’obtention des POD mais est encore aujourd’hui sujette à discussions sur sa robustesse vis-à-vis des données d’entrée (les lois de probabilité des paramètres incertains) et sur la prise en compte des facteurs humains. L’objectif de cette thèse est de valider cette approche sur des cas d’application AIRBUS et d’en améliorer la robustesse afin de la rendre couramment utilisable au niveau industriel, notamment en la faisant accepter par les autorités de vol (FAA et EASA). Pour ce faire le thésard devra mener des campagnes de validations des codes de simulation des CND, mettre en œuvre la méthodologie décrite plus haut sur les cas d’application AIRBUS, puis proposer et mettre en œuvre des stratégies d’amélioration de la robustesse de la méthode vis-à-vis des données d’entrée et des facteurs liés à l’humain. / The performance assessment of non-destructive testing (NDT) procedures in aeronautics is a key step in the preparation of the aircraft's certification document. Such a demonstration of performance is done through the establishment of Probability of Detection (POD) laws integrating all sources of uncertainty inherent in the implementation of the procedure. These uncertainties are due to human and environmental factors in In-Service maintenance tasks. To establish experimentally these POD curves, it is necessary to have data from a wide range of operator skills, defect types and locations, material types, test protocols, etc. Obtaining these data evidences high costs and significant delays for the aircraft manufacturer. The scope of this thesis is to define a robust methodology of building POD from numerical modeling. The POD robustness is ensured by the integration of the uncertainties through statistical distributions issued from experimental data or engineering judgments. Applications are provided on titanium beta using high frequency eddy currents NDT technique. First, an experimental database will be created from three environments: laboratory, A321 aircraft and A400M aicraft. A representative sample of operators, with different certification levels in NDT technique, will be employed. Multiple inspection scenarios will be carried out to analyze these human and environmental factors. In addition, this study will take into account the impact of using different equipments in the HFEC test. This database is used, subsequently, to build statistical distributions. These distributions are the input data of the simulation models of the inspection. These simulations are implemented with the CIVA software. A POD module, based on the Monte Carlo method, is integrated into this software. This module will be applied to address human and ergonomic influences on POD. Additionally this module will help us to understand in a better way the equipment impact in POD curves. Finally, the POD model will be compared and validated with the experimental results developed.

Page generated in 0.0493 seconds