• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 9
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem multiescala do acoplamento eletro-químico em um meio poroso argiloso com dependência do PH / Multiscale modeling of eletro-chemical couplings in clays including PH dependence

Lima, Sidarta Araújo de 25 May 2007 (has links)
Made available in DSpace on 2015-03-04T18:50:57Z (GMT). No. of bitstreams: 1 Phdthesis.pdf: 2066544 bytes, checksum: e0228e0a7b8f6d7fd74050413d2db6d3 (MD5) Previous issue date: 2007-05-25 / Conselho Nacional de Desenvolvimento Cientifico e Tecnologico / In this work we develop a three-scale mathematical modeling to describe electro-chemical couplings in clays using the asymptotic homogenization procedure of periodic structures. We consider the porous medium composed of kaolinite particles saturated by an electrolyte solution of water-solvent and four ionic solutes monovalents Na+, H+, Cl-, OH-At the nanoscale we develop the model of the electrical double layer wherein the electric potential and local charge distribution are ruled by the Poisson- Boltzmann problem. In addition we incorporate the protonation/deprotonation chemical reaction between the fluid and the particle surface and consequently we quantify the dependence of the surface charge density of the particles with the pH of the electrolyte solution. At the microscale, or pore-scale, the movement of the aqueous solution is governed by the Stokes problem whereas ion transport by the Nernst-Planck equation. The pore-scale governing equations are supplemented by slip boundary condition in the tangential velocity of the fluid and adsorption interface conditions arising from the averaging of the nanoscale model. We then homogenize the microscopic model to the macroscale and derive effective equations with additional closure relations for the macroscopic coefficients. The macroscopic model is discretized by the finite volume method and numerical simulations of electrokinetical remediation of a contaminated soil are performed. The numerical results illustrate the strong dependence of the remediation efficiency on the pH of the aqueous solution. / Neste trabalho desenvolvemos a modelagem matemática e computacional em três escalas (nano-micro-macro) do acoplamento eletroquímico em um meio poroso argiloso adotando técnicas de homogeneização de estruturas periódicas. Consideramos o meio poroso uma caulinita saturada por uma solução eletrolítica composta por um solvente aquoso e quatro solutos iônicos monovalentes Na+, H+, Cl-, OH-. Na escala nanoscópica adotamos a modelagem da dupla camada elétrica onde o potencial elétrico e a densidade de carga são governados pelo problema de Poisson-Boltzmann. Incorporamos ao modelo nanoscópico as reações de protonação/deprotonação entre o fluido e a superfície da partícula argilosa e quantificamos numericamente a dependência da carga superficial com o pH da solução eletrolítica. Na escala microscópica, ou escala do poro, o movimento da solução aquosa é governado pelo problema de Stokes e o transporte dos íons pelas equações de Nernst-Planck. As equações microscópicas são suplementadas por condições de contorno de deslizamento da componente tangencial do campo de velocidade e de adsorção dos íons que representam a média do modelo posto na escala nanoscópica. A partir dos modelos nanoscópico/microscópico desenvolvemos a homogeneização do problema derivando o modelo na escala de Darcy (macroscópica) com os respectivos problemas de fechamento para os coeficientes das equações efetivas postos na célula periódica. Finalmente discretizamos o modelo macroscópico utilizando o método de volumes finitos e realizamos simulações numéricas em regimes permanente e transitório do processo de descontaminação de um solo argiloso por técnicas de eletrocinética. Os resultados ilustram a forte dependência da eletroremediação com o pH da solução.
2

Modelagem multiescala de escoamento multifásico em meios poroelásticos fraturados / Multiscale modeling of multi-phase flow in fractured poroelastic media

Baptista, Riedson 23 August 2007 (has links)
Submitted by Maria Cristina (library@lncc.br) on 2015-05-06T18:57:18Z No. of bitstreams: 1 Texto completo.pdf: 760435 bytes, checksum: fcd8352f099442873ca1ab59e54056ab (MD5) / Approved for entry into archive by Maria Cristina (library@lncc.br) on 2015-05-06T18:57:35Z (GMT) No. of bitstreams: 1 Texto completo.pdf: 760435 bytes, checksum: fcd8352f099442873ca1ab59e54056ab (MD5) / Made available in DSpace on 2015-05-06T18:57:51Z (GMT). No. of bitstreams: 1 Texto completo.pdf: 760435 bytes, checksum: fcd8352f099442873ca1ab59e54056ab (MD5) Previous issue date: 2007-08-23 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / In this work we propose a model of two scales to describe the two-phase drainage in fractured poroelasty environment. The derivation of the macroscopic model is obtained through a technique of homogenization of periodic structures applied to the micromechanical model that governs the micro-structure of the environment composed by matrix poroelastic surrounded by a related net of fractures filled out by two Newtonian incompressible immiscible fluids, such as water and oil. In this context, our main result consists of obtaining a hierarchy of macroscopic models with effective parameters. The constituent theory that governs the behavior of these parameters is built through resolution of the local problems of closing that appear of the process of scale change. Among the homogenized parameters we give a particular emphasis to the constituent law obtained for the stress of the effective tensions. Besides the poroelastic behavior with the deformation of the porous skeleton this exhibits the additional dependence with the intermolecular tensions emerging of the discontinuity of the saturation between the systems of blocks and fractures. Numerical simulations of the local cells problems obtained by the method of the finite elements are explored in the reconstruction of the constituent laws of the homogenized coefficients. / Neste trabalho propomos um modelo a duas escalas para descrever escoamentos multifásicos em meios poroelásticos fraturados. A derivação do modelo macroscópico é obtida via técnica de homogeneização de estruturas periódicas aplicada ao modelo micromecânico que governa a microestrutura do meio composta por uma matriz poroelástica circundada por uma rede conexa de fraturas preenchidas por dois fluidos Newtonianos imiscíveis incompressíveis, tais como água e óleo. Neste contexto o nosso principal resultado consiste na obtenção de uma hierarquia de modelos macroscópicos com parâmetros efetivos. A teoria constitutiva que rege o comportamento destes parâmetros é construída via resolução dos problemas locais de fechamento que surgem do processo de mudança de escala. Dentre os parâmetros homogeneizados damos ênfase particular à lei constitutiva obtida para o tensor das tensões efetivas. Além do comportamento poroelástico com a deformação do esqueleto poroso, esta exibe a dependência adicional com as tensões intermoleculares advindas da descontinuidade da saturação entre os sistemas de blocos e fraturas. Resultados computacionais dos problemas de célula locais, obtidos pelo método dos elementos finitos, são explorados na reconstrução das leis constitutivas dos coeficientes homogeneizados.
3

Multiscale modeling of eletro-chemical couplings in clays including PH dependence / Modelagem multiescala do acoplamento eletro-químico em um meio poroso argiloso com dependência do PH

Sidarta Araújo de Lima 25 May 2007 (has links)
In this work we develop a three-scale mathematical modeling to describe electro-chemical couplings in clays using the asymptotic homogenization procedure of periodic structures. We consider the porous medium composed of kaolinite particles saturated by an electrolyte solution of water-solvent and four ionic solutes monovalents Na+, H+, Cl-, OH-At the nanoscale we develop the model of the electrical double layer wherein the electric potential and local charge distribution are ruled by the Poisson- Boltzmann problem. In addition we incorporate the protonation/deprotonation chemical reaction between the fluid and the particle surface and consequently we quantify the dependence of the surface charge density of the particles with the pH of the electrolyte solution. At the microscale, or pore-scale, the movement of the aqueous solution is governed by the Stokes problem whereas ion transport by the Nernst-Planck equation. The pore-scale governing equations are supplemented by slip boundary condition in the tangential velocity of the fluid and adsorption interface conditions arising from the averaging of the nanoscale model. We then homogenize the microscopic model to the macroscale and derive effective equations with additional closure relations for the macroscopic coefficients. The macroscopic model is discretized by the finite volume method and numerical simulations of electrokinetical remediation of a contaminated soil are performed. The numerical results illustrate the strong dependence of the remediation efficiency on the pH of the aqueous solution. / Neste trabalho desenvolvemos a modelagem matemática e computacional em três escalas (nano-micro-macro) do acoplamento eletroquímico em um meio poroso argiloso adotando técnicas de homogeneização de estruturas periódicas. Consideramos o meio poroso uma caulinita saturada por uma solução eletrolítica composta por um solvente aquoso e quatro solutos iônicos monovalentes Na+, H+, Cl-, OH-. Na escala nanoscópica adotamos a modelagem da dupla camada elétrica onde o potencial elétrico e a densidade de carga são governados pelo problema de Poisson-Boltzmann. Incorporamos ao modelo nanoscópico as reações de protonação/deprotonação entre o fluido e a superfície da partícula argilosa e quantificamos numericamente a dependência da carga superficial com o pH da solução eletrolítica. Na escala microscópica, ou escala do poro, o movimento da solução aquosa é governado pelo problema de Stokes e o transporte dos íons pelas equações de Nernst-Planck. As equações microscópicas são suplementadas por condições de contorno de deslizamento da componente tangencial do campo de velocidade e de adsorção dos íons que representam a média do modelo posto na escala nanoscópica. A partir dos modelos nanoscópico/microscópico desenvolvemos a homogeneização do problema derivando o modelo na escala de Darcy (macroscópica) com os respectivos problemas de fechamento para os coeficientes das equações efetivas postos na célula periódica. Finalmente discretizamos o modelo macroscópico utilizando o método de volumes finitos e realizamos simulações numéricas em regimes permanente e transitório do processo de descontaminação de um solo argiloso por técnicas de eletrocinética. Os resultados ilustram a forte dependência da eletroremediação com o pH da solução.
4

Emprego do método de homogeneização assintótica no cálculo das propriedades efetivas de estruturas ósseas / Using the asymptotic homogenization method to evaluate the effective properties of bone structures

Silva, Uziel Paulo da 28 May 2014 (has links)
Ossos são sólidos não homogêneos com estruturas altamente complexas que requerem uma modelagem multiescala para entender seu comportamento eletromecânico e seus mecanismos de remodelamento. O objetivo deste trabalho é encontrar expressões analíticas para as propriedades elástica, piezoelétrica e dielétrica efetivas de osso cortical modelando-o em duas escalas: microscópica e macroscópica. Utiliza-se o Método de Homogeneização Assintótica (MHA) para calcular as constantes eletromecânicas efetivas deste material. O MHA produz um procedimento em duas escalas que permite obter as propriedades efetivas de um material compósito contendo uma distribuição periódica de furos cilíndricos circulares unidirecionais em uma matriz piezoelétrica linear e transversalmente isotrópica. O material da matriz pertence à classe de simetria cristalina 622. Os furos estão centrados em células de uma matriz periódica de secções transversais quadradas e a periodicidade é a mesma em duas direções perpendiculares. O compósito piezoelétrico está sob cisalhamento antiplano acoplado a um campo elétrico plano. Os problemas locais que surgem da análise em duas escalas usando o MHA são resolvidos por meio de um método da teoria de variáveis complexas, o qual permite expandir as soluções correspondentes em séries de potências de funções elípticas de Weierstrass. Os coeficientes das séries são determinados das soluções de sistemas lineares infinitos de equações algébricas. Truncando estes sistemas infinitos até uma ordem finita de aproximação, obtêm-se fórmulas analíticas para as constantes efetivas elástica, piezoelétrica e dielétrica, que dependem da fração de volume dos furos e de um fator de acoplamento eletromecânico da matriz. Os resultados numéricos obtidos a partir destas fórmulas são comparados com resultados obtidos pelas fórmulas calculadas via método de Mori-Tanaka e apresentam boa concordância. A boa concordância entre todas as curvas obtidas via MHA sugere que a expressão correspondente da primeira aproximação fornece uma fórmula muito simples para calcular o fator de acoplamento efetivo do compósito. Os resultados são úteis na mecânica de osso. / Bones are inhomogeneous solids with highly complex structures that require multiscale modeling to understand its electromechanical behavior and its remodeling mechanisms. The objective of this work is to find analytical expressions for the effective elastic, piezoelectric, and dielectric properties of cortical bone by modeling it on two scales: microscopic and macroscopic. We use Asymptotic Homogenization Method (AHM) to calculate the effective electromechanical constants of this material. The AHM yields a two-scale procedure to obtain the effective properties of a composite material containing a periodic distribution of unidirectional circular cylindrical holes in a linear transversely isotropic piezoelectric matrix. The matrix material belongs to the symmetry crystal class 622. The holes are centered in a periodic array of cells of square cross sections and the periodicity is the same in two perpendicular directions. The piezoelectric composite is under antiplane shear deformation together with in-plane electric field. Local problems that arise from the two-scale analysis using the AHM are solved by means of a complex variable method, which allows us to expand the corresponding solutions in power series of Weierstrass elliptic functions. The coefficients of these series are determined from the solutions of infinite systems of linear algebraic equations. Truncating the infinite systems up to a finite, but otherwise arbitrary, order of approximation, we obtain analytical formulas for effective elastic, piezoelectric, and dielectric properties, which depend on both the volume fraction of the holes and an electromechanical coupling factor of the matrix. Numerical results obtained from these formulas are compared with results obtained by the Mori-Tanaka approach and show good agreement. The good agreement between all curves obtained via AHM suggests that the corresponding expression of first approximation provides a very simple formula to calculate the effective coupling factor of the composite. The results are useful in bone mechanics.
5

Modelagem multiescala de reservatórios não convencionais de gás contendo redes de fraturas naturais e hidráulicas

Rocha, Aline Cristina da 20 March 2017 (has links)
Submitted by Maria Cristina (library@lncc.br) on 2017-08-10T14:46:54Z No. of bitstreams: 1 tese_AlineRocha_2017.pdf: 17879231 bytes, checksum: 4f4051ece6ff4381064ab5338f79624d (MD5) / Approved for entry into archive by Maria Cristina (library@lncc.br) on 2017-08-10T14:47:10Z (GMT) No. of bitstreams: 1 tese_AlineRocha_2017.pdf: 17879231 bytes, checksum: 4f4051ece6ff4381064ab5338f79624d (MD5) / Made available in DSpace on 2017-08-10T14:47:21Z (GMT). No. of bitstreams: 1 tese_AlineRocha_2017.pdf: 17879231 bytes, checksum: 4f4051ece6ff4381064ab5338f79624d (MD5) Previous issue date: 2017-03-20 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / In this work we construct a new multiscale computational model to describe the flow of gases in unconventional reservoirs (shale gas) containing distinct levels of fractures (natural and hydraulic). Such reservoirs exhibit peculiar characteristics that make an accurate description of the physical phenomenon involved a hard task. Among the characteristics we can highlight the low permeability (order of nanodarcys) and the multiple levels of porosity related to the multiple scales involved. In the present work the multiscale modeling of the gas flow is built with the formal homogenization procedure. The geological formation is characterized by four distinct length scales. The finest one, the nanoscopic, is related to the nanopores in the organic matter (kerogen) where gas is adsorbed. In order to accurately describe the gas adsorption in kerogen we pursue in the context of the Thermodynamics of Inhomogeneous Fluids. More precisely, the isotherms that describe the gas adsorption in nanopores are built based on the Density Functional Theory (DFT). The upscaling to the microscale is reached through the homogenization procedure. The window of observation related to this scale is composed of kerogen aggregates and inorganic matter (clay, quartz, calcite). Such phases are separated by the network of interparticle pores exibting characteristic length between 10^{-4} and 10^{-9} meters. The micropores are partially-saturated, filled with a free gas phase in thermodynamic equilibrium with the dissolved gas in the aqueous phase. The model considers immobile water phase with the equation of fickian diffusion of the dissolved gas coupled to the Darcyan flow of the free gas. At the mesoscale the shale matrix (where interparticle pores, kerogen aggregates and inorganic matter are envisioned as an homogenized media) is intertwined by the network of natural fractures exhibiting preferred paths for the flow of gas. The upscaling of this coupled system of partial differential equations gives rise to a macroscopic model of double porosity in the sense of Arbogast and coworkers (ARBOGAST; DOUGLAS JR.; HORNUNG, 1990). Within this context the shale matrix behaves as a microstructural distributed mass source term in the mass balance equation that describes the gas movement in the homogenized network of natural fractures. Finally we establish the coupling between the hydrodynamics in the networks of natural and hydraulic fractures, where single phase gas flow takes place. Such coupling is accomplished by reduced dimension techniques where induced fractures are treated as (n-1), n = 2,3 lower dimensional geological objects. The resulting model is composed of three partial differential nonlinear equations governing the gas hydrodynamics in the shale matrix and networks of natural and hydraulic fractures. In order to decouple the system we proceed within the context proposed by Arbogast (ARBOGAST,1997) which adopts a variable decomposition leading to the numerical solution of independent subsystems. This strategy allows the solution of the system mentioned above to be made in a sequential form avoiding additional iterations between the subsystems. The resultant governing equations are discretized by the finite element method with the introduction of submeshes to threat the gas transport in shale matrix and compute the source term in the pressure equation of the natural fractures network. The discretized model is used to simulate gas production as well as transient well tests. Promising numerical results are obtained which can be used to improve the description of the involved phenomena giving rise to new diagnostic curves to the characterization of unconventional reservoirs. / Neste trabalho propomos um novo modelo computacional multiescala para descrever o transporte de gases em reservatórios não convencionais (shale gas) com distintos níveis de fraturas (naturais e hidráulicas). Tais reservatórios apresentam características bastante peculiares que tornam a descrição acurada dos fenômenos físicos envolvidos uma tarefa árdua. Dentre estas características podemos ressaltar a baixíssima permeabilidade (da ordem de nanodarcys) e os múltiplos níveis de porosidade associados às múltiplas escalas envolvidas. No presente trabalho a modelagem multiescala do transporte do gás metano é construída fazendo uso do processo formal de homogeneização. O modelo considera o reservatório descrito por quatro escalas espaciais distintas. A escala mais fina, nanoscópica, é associada aos nanoporos na matéria orgânica (querogênio) onde o gás encontra-se adsorvido. Para descrever precisamente a adsorção do gás no querogênio fazemos uso da Termodinâmica de Gases Confinados. Mais precisamente, as isotermas de adsorção do gás nos nanoporos são construídas fazendo uso da Density Functional Theory (DFT). Através do processo de homogeneização é realizado o upscaling para a escala intermediária (microscópica). A janela observacional associada a esta escala consiste dos agregados de querogênio juntamente com a matéria inorgânica (considerada impermeável) e rede de microporos que podem exibir tamanhos entre 10^{-4} a 10^{-9} metros. Consideramos estes, por sua vez, parcialmente saturados preenchidos por uma fase gás livre em equilíbrio termodinâmico local com o gás dissolvido na fase aquosa. O modelo considera a água estagnada com a equação de difusão fickiana do gás dissolvido acoplada ao escoamento do gás livre. Na mesoescala a matriz do folhelho (na qual microporos, agregados de querogênio e matéria inorgânica são tratados como um meio contínuo homogeneizado) é permeada por uma rede de fraturas naturais que exibem caminhos preferenciais para o movimento do gás. O processo do upscaling deste sistema acoplado de equações diferenciais parciais dá origem a um modelo macroscópico de porosidade dupla no sentido de Arbogast e colaboradores (ARBOGAST; DOUGLAS JR.; HORNUNG, 1990). Neste contexto, a matriz atua como uma fonte de massa distribuída microestruturalmente no balanço de massa que descreve o movimento do gás na rede de fraturas naturais. Finalmente estabelecemos o acoplamento entre as hidrodinâmicas nas redes de fraturas naturais e hidráulicas, onde ocorre o escoamento monofásico do gás livre. Tal acoplamento é realizado via técnica de redução de dimensão onde as fraturas hidráulicas são tratadas como objetos geológicos de dimensão reduzida (n-1), n=2,3. O modelo resultante é composto por três equações diferenciais parciais não lineares acopladas que governam a hidrodinâmica do gás na matriz e redes de fraturas naturais e hidráulicas. Com o intuito de desacoplar o sistema procedemos no contexto proposto por Arbogast (ARBOGAST,1997) que consiste em utilizar uma decomposição das variáveis resultando em subsistemas independentes a serem resolvidos numericamente. Esta escolha permite que o sistema supracitado seja resolvido de forma sequencial evitando a necessidade de iterações adicionais entre os subsistemas. Na discretização espacial adotamos o método de elementos finitos com a introdução de submalhas para tratar o transporte do gás na matriz e assim efetuar de forma precisa o cálculo do termo de fonte na equação da pressão do gás na rede de fraturas naturais. O modelo discreto é utilizado para o cômputo da produção de gás bem como para simular testes transientes de pressão em poços. Resultados numéricos promissores são obtidos os quais podem ser empregados para aprimorar a descrição dos fenômenos envolvidos e dar origem a novas curvas de diagnóstico para caracterização de propriedades de reservatórios não convencionais.
6

Modelagem Matem?tica e Computacional de fen?menos eletrocin?ticos em meios porosos carregados eletricamente

Silva, Aldemir Cirilo da 05 August 2013 (has links)
Made available in DSpace on 2015-03-03T15:32:42Z (GMT). No. of bitstreams: 1 AldemirCS_DISSERT.pdf: 1952169 bytes, checksum: 3e6ed185e5fcc4c7c140617ac7e32f9d (MD5) Previous issue date: 2013-08-05 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In this work we present a mathematical and computational modeling of electrokinetic phenomena in electrically charged porous medium. We consider the porous medium composed of three different scales (nanoscopic, microscopic and macroscopic). On the microscopic scale the domain is composed by a porous matrix and a solid phase. The pores are filled with an aqueous phase consisting of ionic solutes fully diluted, and the solid matrix consists of electrically charged particles. Initially we present the mathematical model that governs the electrical double layer in order to quantify the electric potential, electric charge density, ion adsorption and chemical adsorption in nanoscopic scale. Then, we derive the microscopic model, where the adsorption of ions due to the electric double layer and the reactions of protonation/ deprotana?~ao and zeta potential obtained in modeling nanoscopic arise in microscopic scale through interface conditions in the problem of Stokes and Nerst-Planck equations respectively governing the movement of the aqueous solution and transport of ions. We developed the process of upscaling the problem nano/microscopic using the homogenization technique of periodic structures by deducing the macroscopic model with their respectives cell problems for effective parameters of the macroscopic equations. Considering a clayey porous medium consisting of kaolinite clay plates distributed parallel, we rewrite the macroscopic model in a one-dimensional version. Finally, using a sequential algorithm, we discretize the macroscopic model via the finite element method, along with the interactive method of Picard for the nonlinear terms. Numerical simulations on transient regime with variable pH in one-dimensional case are obtained, aiming computational modeling of the electroremediation process of clay soils contaminated / Neste trabalho apresentamos uma modelagem matem?tica e computacional de fen?menos eletrocin?ticos em meios porosos carregados eletricamente. Consideramos o meio poroso composto por tr?s diferentes escalas (nanosc?pica, microsc?pica e macroscopica). Na escala microsc?pica o dom?nio ? composto por uma matriz porosa e uma fase s?lida. Os poros s~ao preenchido por uma fase aquosa composta por solutos i?nicos totalmente diluidos, e a matriz s?lida consiste de part?culas carregadas eletricamente. Inicialmente apresentamos o modelo matem?tico que governa a dupla camada el?trica com o intuito de quantificar o potencial el?trico, densidade de carga el?trica, adsor??o de ?ons e adsor??o qu?mica na escala nanosc?pica. Em seguida, derivamos o modelo microsc?pico, onde a adsor??o de ?ons devido a dupla camada el?trica e as rea??es de protona??o/deprotana??o e potencial zeta obtidos na modelagem nanosc?pica, surgem na escala microsc?pica atrav?s de condi??es de interface no problema de Stokes e equa??es de Nerst-Planck que governam respectivamente o movimento da solu??o aquosa e o transporte dos ?ons. Desenvolvemos o processo de upscaling do problema nano/microsc?pico, utilizando a t?cnica de homogeneiza??o de estruturas peri?dicas, deduzindo o modelo macrosc?pico com os respectivos problemas de c?lulas para os par?metros efetivos das equa??es macrosc?picas. Considerando um meio poroso argiloso consistindo de placas da argila caulinita distribu?das paralelamente, reescrevemos o modelo macrosc?pico numa vers?o unidimensional. Finalmente utilizando um algoritmo sequencial, discretizamos o modelo macrosc ?pico via m?todo dos elementos finitos, juntamente com o m?todo interativo de Picard para os termos n?o lineares. Simula??es num?ricas em regime transiente com pH vari?vel no caso unidimensional s?o obtidas, objetivando a modelagem computacional do processo de eletroremedia??o de solos argilosos contaminados
7

Implementação computacional paralela da homogeneização por expansão assintótica para análise de problemas mecânicos em 3D

Quintela, Bárbara de Melo 31 January 2011 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-03-03T14:15:37Z No. of bitstreams: 1 barbarademeloquintela.pdf: 17938706 bytes, checksum: 9ab0cb4d4226bdefe7051c92e73feec9 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T20:15:36Z (GMT) No. of bitstreams: 1 barbarademeloquintela.pdf: 17938706 bytes, checksum: 9ab0cb4d4226bdefe7051c92e73feec9 (MD5) / Made available in DSpace on 2017-03-06T20:15:36Z (GMT). No. of bitstreams: 1 barbarademeloquintela.pdf: 17938706 bytes, checksum: 9ab0cb4d4226bdefe7051c92e73feec9 (MD5) Previous issue date: 2011-01-31 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais / A Homogeneização por Expansão Assintótica (HEA) é uma técnica multiescala empregada ao cálculo de propriedades efetivas de meios contínuos com estrutura periódica. As principais vantagens desta técnica são a redução do tamanho do problema a resolver e a possibilidade de se empregar uma propriedade homogeneizada que guarda informações da microestrutura heterogênea. Quando associada ao Método dos Elementos Finitos (MEF), a HEA demanda o emprego de malhas que permitam a imposição de condições de contorno periódicas – sendo portanto necessário especificar tal particularidade quando da geração dos modelos em MEF. Tais modelos representam as células periódicas, que são volumes representativos do meio heterogêneo e, em alguns casos, apresentam uma complexidade geométrica e física que torna imprescindível o emprego de malhas com alto grau de refinamento – levando a um custo computacional significativo. Este trabalho tem por objetivo a obtenção de um programa em Elementos Finitos para a aplicação da HEA à Elasticidade em 3D, empregando técnicas de programação paralela. Foram desenvolvidas versões do programa em 2D: uma sequencial em C e duas paralelas empregando OpenMP e CUDA. Foi implementado com sucesso o programa HEA3D em uma versão sequencial, em linguagem FORTRAN e uma paralela, empregando OpenMP. Para validação dos programas, foram analisadas células periódicas bifásicas e os resultados apresentaram boa concordância com valores experimentais e numéricos disponíveis na literatura. A versão paralela obteve expressivos ganhos de desempenho, com acelerações de desempenho de até 5.3 vezes em relação a versão sequencial. / The Asymptotic Expansion Homogenization (AEH) is a multiscale technique applied to estimate the effective properties of heterogeneous media with periodical structure. The main advantages of this technique are the reduction of the problem size to be solved and the ability to employ an homogenized property that keeps information from the heterogeneous microstructure. In association with the Finite Element Method (FEM), the AEH requires the application of periodic boundary conditions, which must be taken into account during the generation of FE meshes. Such models represent periodic cells, which are representative volumes for heterogeneous media and, in some cases, present a geometric and physics complexity that demands refined meshes, leading to a significant computational cost. The aim of this work is to develop a parallel program that applies both FEM and AEH to estimate the elasticity properties of 3D bodies. A sequential version of the 2D program using C, and parallel versions using OpenMP and CUDA were implemented. A sequential version of the program, called HEA3D, was successfully implemented using FORTRAN. Also, a parallel version of the code was implemented using OpenMP. The validation of the codes consisted of comparisons of the numerical results obtained, with numerical and experimental data available in the literature, showing good agreement. Significant speedups were obtained by the parallel version of the code, achieving speedups up to 5.3 times over its sequential version.
8

Emprego do método de homogeneização assintótica no cálculo das propriedades efetivas de estruturas ósseas / Using the asymptotic homogenization method to evaluate the effective properties of bone structures

Uziel Paulo da Silva 28 May 2014 (has links)
Ossos são sólidos não homogêneos com estruturas altamente complexas que requerem uma modelagem multiescala para entender seu comportamento eletromecânico e seus mecanismos de remodelamento. O objetivo deste trabalho é encontrar expressões analíticas para as propriedades elástica, piezoelétrica e dielétrica efetivas de osso cortical modelando-o em duas escalas: microscópica e macroscópica. Utiliza-se o Método de Homogeneização Assintótica (MHA) para calcular as constantes eletromecânicas efetivas deste material. O MHA produz um procedimento em duas escalas que permite obter as propriedades efetivas de um material compósito contendo uma distribuição periódica de furos cilíndricos circulares unidirecionais em uma matriz piezoelétrica linear e transversalmente isotrópica. O material da matriz pertence à classe de simetria cristalina 622. Os furos estão centrados em células de uma matriz periódica de secções transversais quadradas e a periodicidade é a mesma em duas direções perpendiculares. O compósito piezoelétrico está sob cisalhamento antiplano acoplado a um campo elétrico plano. Os problemas locais que surgem da análise em duas escalas usando o MHA são resolvidos por meio de um método da teoria de variáveis complexas, o qual permite expandir as soluções correspondentes em séries de potências de funções elípticas de Weierstrass. Os coeficientes das séries são determinados das soluções de sistemas lineares infinitos de equações algébricas. Truncando estes sistemas infinitos até uma ordem finita de aproximação, obtêm-se fórmulas analíticas para as constantes efetivas elástica, piezoelétrica e dielétrica, que dependem da fração de volume dos furos e de um fator de acoplamento eletromecânico da matriz. Os resultados numéricos obtidos a partir destas fórmulas são comparados com resultados obtidos pelas fórmulas calculadas via método de Mori-Tanaka e apresentam boa concordância. A boa concordância entre todas as curvas obtidas via MHA sugere que a expressão correspondente da primeira aproximação fornece uma fórmula muito simples para calcular o fator de acoplamento efetivo do compósito. Os resultados são úteis na mecânica de osso. / Bones are inhomogeneous solids with highly complex structures that require multiscale modeling to understand its electromechanical behavior and its remodeling mechanisms. The objective of this work is to find analytical expressions for the effective elastic, piezoelectric, and dielectric properties of cortical bone by modeling it on two scales: microscopic and macroscopic. We use Asymptotic Homogenization Method (AHM) to calculate the effective electromechanical constants of this material. The AHM yields a two-scale procedure to obtain the effective properties of a composite material containing a periodic distribution of unidirectional circular cylindrical holes in a linear transversely isotropic piezoelectric matrix. The matrix material belongs to the symmetry crystal class 622. The holes are centered in a periodic array of cells of square cross sections and the periodicity is the same in two perpendicular directions. The piezoelectric composite is under antiplane shear deformation together with in-plane electric field. Local problems that arise from the two-scale analysis using the AHM are solved by means of a complex variable method, which allows us to expand the corresponding solutions in power series of Weierstrass elliptic functions. The coefficients of these series are determined from the solutions of infinite systems of linear algebraic equations. Truncating the infinite systems up to a finite, but otherwise arbitrary, order of approximation, we obtain analytical formulas for effective elastic, piezoelectric, and dielectric properties, which depend on both the volume fraction of the holes and an electromechanical coupling factor of the matrix. Numerical results obtained from these formulas are compared with results obtained by the Mori-Tanaka approach and show good agreement. The good agreement between all curves obtained via AHM suggests that the corresponding expression of first approximation provides a very simple formula to calculate the effective coupling factor of the composite. The results are useful in bone mechanics.
9

Estudo do comportamento mecânico do concreto com agregado reciclado mediante modelagem multiescala pelo MEF Bauru /

Gimenes, Marcela January 2020 (has links)
Orientador: Osvaldo Luís Manzoli / Resumo: Este trabalho apresenta uma proposta de análise numérica do concreto com agregados reciclados (CAR). A ferramenta desenvolvida facilita a avaliação do comportamento mecânico do material, verificando a viabilidade de sua utilização para fins estruturais. Considerando que no Brasil o emprego atual do material ainda é bastante limitado em comparação com outros países, o CAR pode vir a ser utilizado mais ampla e adequadamente, trazendo vantagens de caráter estrutural, econômico, e principalmente ambiental. Em termos de modelagem do CAR, a ocorrência de particularidades em nível mesoscópico exige um modelo em escala mais refinada para representar as propriedades alteradas do agregado reciclado (AR), de modo que foi desenvolvido um gerador de agregados reciclados para representar sua composição variada. Os mecanismos de falha que ocorrem nas interfaces características do agregado reciclado e da matriz de concreto introduzem não linearidade ao problema mecânico. Para que haja a representação dessa não linearidade, a estratégia de modelagem proposta recorre ao emprego da técnica de fragmentação de malha de elementos finitos juntamente com um modelo constitutivo de dano. Essa técnica de fragmentação baseia-se no emprego de elementos finitos com alta razão de aspecto, os quais poderão ser utilizados para representar as fases adicionais desse material compósito, correspondentes às diferentes zonas de transição interfaciais (ZTIs) intrínsecas do CAR em mesoescala, e consequentemente, cam... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This research presents a numerical analysis proposal for recycled aggregate concrete (RAC), whose recycled aggregates are obtained from the crushing of concrete waste. The developed tool facilitates the mechanical behavior evaluation of the RAC, verifying the feasibility of its use for structural purposes. Considering that in Brazil the current use of the material is still quite limited in comparison with other countries, the RAC could be used more widely and properly, bringing structural, economic and mainly environmental advantages. Due to the occurrence of mesoscopic specificities, the RAC modeling requires a more refined scale model to represent the altered properties of recycled aggregate, so that a recycled aggregate generator was developed to represent its variable composition. The failure mechanisms that occur at the several interfaces of the recycled aggregate (RA) and concrete matrix introduce nonlinearity to the mechanical problem. In order to represent this nonlinearity, the proposed modeling strategy uses the finite element mesh fragmentation technique together with robust and stable damage constitutive model. This fragmentation technique is based on the use of finite elements with high aspect ratio, which can be used to represent the additional phases of this composite material, corresponding to the different mesoscale RAC intrinsic interfacial transition zones (ITZs), as well as potential pathways for the propagation of fractures. A constitutive model based on ... (Complete abstract click electronic access below) / Mestre

Page generated in 0.0799 seconds