• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling of Soot Formation and Oxidation in Turbulent Diffusion Flames

Kleiveland, Rune Natten January 2005 (has links)
<p>Soot and radiation play an important role when designing practical combustion devices, and great efforts have been put into developing models which describe soot formation and oxidation. The Eddy Dissipation Concept (EDC) has proven to describe turbulent combustion well, and has the flexibility to describe chemical kinetics in a detailed manner. The aim of this work is to study how the EDC handles soot models based on a detailed representation of the gas-phase chemical kinetics.</p><p>Two versions of a semi-empirical soot model is used in conjunction with the EDC. Concentrations of various intermediate species are used as input to the soot models.</p><p>The implementation of the new soot models is discussed in relation to the previous implementation of a less detailed soot model. To assure that the interaction between soot and the gas-phase species is represented correctly, the soot models are implemented with a two-way coupling of soot and gas-phase kinetics.</p><p>Soot is a good radiator. In a sooting flame a substantial amount of energy will be transferred to the surroundings by thermal radiation. This transfer of energy will alter the temperature field of the flame and the change in temperature will affect the kinetics of soot and gas-phase chemistry. To simulate sooting flames correctly, it was therefore necessary to include a radiation model.</p><p>To validate the coupled models of turbulence, combustion, soot, and radiation two different turbulent flames were simulated. One turbulent jet flame of methane and one turbulent jet flame of ethylene. For both flames the computed results were compared with measured values.</p><p>Several aspects of the simulations are studied and discussed, such as the effect of the two-way coupling of soot and gas-phase kinetics on both soot yield and gas-phase composition, and the importance of a suitable radiation model.</p><p>The two-way coupling of soot and gas phase kinetics is shown to have a positive effect on the computed soot volume fractions, and the results are considered to be encouraging. The work has demonstrated that the EDC has the capacity to handle different types of chemical reaction mechanisms, such as mechanisms for gas-phase combustion and soot kinetics, without modification.</p>
2

Modelling and control of fluid flows and marine structures

Aamo, Ole Morten January 2002 (has links)
<p>The contributions of this thesis fall naturally into two main categories: Part I: Feedback control of fluid flows, and; Part II: Modelling and control of marine structures.</p><p><b>Main Con tributions of Part I</b></p><p>Part I presents new results on stabilization (for the purpose of drag reduction or vortex shedding suppression) and destabilization (for the purpose of mixing) of channel, pipe and cylinder flows. In order to provide a stand-alone reference on this topic, the thesis also contains a comprehensive review of the research carried out in this field over the last decade or so, along with introductory chapters on fluid mechanics and control theory. The review also serves the purpose of placing the contributions by the author into the wider context of the field. The contributions by the author are the following:</p><p><b>Section 4.3.1:</b> A new boundary feedback control law for stabilization of the parabolic equilibrium flow in 2D channel flow is derived using Lyapunov stability theory. The controller uses pressure measurements taken on the channel wall, and applies actuation in the form of wall transpiration, that is, suction and blowing of fluid across the wall. Although the analysis is valid for small Reynolds numbers, only, simulations indicate that the control is very effcient in stabilizing the flow at Reynolds numbers several orders of magnitude higher. The pressure-based control law performed much better than other Lyapunov-based control laws studied.</p><p><b>Section 4.3.3: </b>The simple pressure-based control law derived in Section 4.3.1 is generalized to the 3D pipe flow. As for the 2D channel flow, the analysis is valid for small Reynolds numbers, only.</p><p><b>Section 4.3.4: </b>The pressure-based feedback control law derived in Section 4.3.1 for the 2D channel flow results in flow transients with instantaneous drag far lower than that of the corresponding laminar flow. In fact, for the first time, instantaneous total drag in a constant-mass- flow 2D channel flow is driven to negative levels. The physical mechanisms by which this phenomenon occur is explained, and the possibility of achieving sustained drag reductions to below the laminar level by initiating such low-drag transients on a periodic basis is explored. The results add to the evidence that the laminar ow represents a fundamental limit to the drag reduction achievable by wall transpiration.</p><p><b>Section 4.4:</b> A state feedback controller that achieves global asymptotic stabilization of a nonlinear Ginzburg-Landau model of vortex shedding from bluff bodies is designed using backstepping. Stabilization is obtained in two steps. First, the upstream and downstream parts of the system are shown to exhibit the inputto- state stability property with respect to certain boundary input terms governed by the core flow in the vicinity of the bluff body. Second, a finite difference approximation of arbitrary order of the core flow is stabilized using the backstepping method. Consequently, all the states in the core flow are driven to zero, including the boundary input terms of the upstream and downstream subsystems. The control design is valid for any Reynolds number, and simulations demonstrate its performance.</p><p><b>Section 5.2:</b> For thefirst time, active feedback control is used to enhance mixing by exploiting the natural tendency in the flow to mix. By applying the pressurebased feedback control law derived for stabilizing the 2D channel flow in Section 4.3.1, with the sign of the input reversed, enhanced instability of the parabolic equilibrium flow is obtained, which leads rapidly to highly complex flow patterns. The mixing enhancement is quantified using various diagnostic tools.</p><p><b>Section 5.3: </b>A Lyapunov based boundary feedback controller for achieving mixing in a 3D pipe flow governed by the Navier-Stokes equation is designed. It is shown that the control law maximizes a measure of mixing that incorporates stretching and folding of material elemen ts, while at the same time minim izing the control effort and the sensing effort. The penalty on sensing results in a static output- feedback control law (rather than full-state feedback). A lower bound on the gain from the control effort to the mixing measure is also deriv ed. For the openloop system, input/output-to-state stability properties are established, which show a form of detectability of mixing in the interior of the pipe from the chosen outputs on the wall. The effectiveness of the optimal control in achieving mixing enhancement is demonstrated in numerical sim ulations. Simulation results also show that the spatial changes in the control velocity are smooth and small, promising that a low number of actuators will suffice in practice.</p><p><b>Section 5.4: </b>Motivated by the mixing results for channels and pipes in Sections 5.2 and 5.3, a simulation study that investigates the feasibility of enhancing particle dispersion in the wake of a circular cylinder is carried out. For a subcritical case, vortex shedding is successfully provoked using feedback.</p><p><b>Main Contributions of Part II</b></p><p>Part II deals with modelling and control of slender marine structures and marine vessels.</p><p><b>Chapter 8:</b> A new finite element model for a cable suspended in water is developed. Global existence and uniqueness of solutions of the truncated system is shown for a slightly simplified equation describing the motion of a cable with negligible added mass and supported by fixed end-points. Based on this, along with well known results on local existence and uniqueness of solutions for symmetrizable hyperbolic systems, a global result for the initial-boundary value problem is conjectured. The FEM model for the cable is assembled to give a model of a multi-cable mooring system, whic h, in turn, is coupled to a rigid body model of the floating vessel. The result is a coupled dynamical model of a moored v essel, which can be applied to applications such as turret-based moored ships, or tension leg platforms. As a simple application of the sim ulator, controlling the line tensions dynamically as an additional means of station keeping is explored.</p><p><b>Chapter 9: </b>Output feedback tracking control laws for a class of Euler-Lagrange systems subject to nonlinear dissipative loads are designed. By imposing a monotone damping condition on the nonlinearities of the unmeasured states, the common restriction that the nonlinearities be globally Lipschitz is removed. The proposed observer-controller scheme renders the origin of the error dynamics uniformly globally asymptotically stable, in the general case. Under certain additional assumptions, the result continue to hold for a simplified control law that is less sensitive to noise and unmodeled phenomena.</p>
3

Modelling and control of fluid flows and marine structures

Aamo, Ole Morten January 2002 (has links)
The contributions of this thesis fall naturally into two main categories: Part I: Feedback control of fluid flows, and; Part II: Modelling and control of marine structures. <b>Main Con tributions of Part I</b> Part I presents new results on stabilization (for the purpose of drag reduction or vortex shedding suppression) and destabilization (for the purpose of mixing) of channel, pipe and cylinder flows. In order to provide a stand-alone reference on this topic, the thesis also contains a comprehensive review of the research carried out in this field over the last decade or so, along with introductory chapters on fluid mechanics and control theory. The review also serves the purpose of placing the contributions by the author into the wider context of the field. The contributions by the author are the following: <b>Section 4.3.1:</b> A new boundary feedback control law for stabilization of the parabolic equilibrium flow in 2D channel flow is derived using Lyapunov stability theory. The controller uses pressure measurements taken on the channel wall, and applies actuation in the form of wall transpiration, that is, suction and blowing of fluid across the wall. Although the analysis is valid for small Reynolds numbers, only, simulations indicate that the control is very effcient in stabilizing the flow at Reynolds numbers several orders of magnitude higher. The pressure-based control law performed much better than other Lyapunov-based control laws studied. <b>Section 4.3.3: </b>The simple pressure-based control law derived in Section 4.3.1 is generalized to the 3D pipe flow. As for the 2D channel flow, the analysis is valid for small Reynolds numbers, only. <b>Section 4.3.4: </b>The pressure-based feedback control law derived in Section 4.3.1 for the 2D channel flow results in flow transients with instantaneous drag far lower than that of the corresponding laminar flow. In fact, for the first time, instantaneous total drag in a constant-mass- flow 2D channel flow is driven to negative levels. The physical mechanisms by which this phenomenon occur is explained, and the possibility of achieving sustained drag reductions to below the laminar level by initiating such low-drag transients on a periodic basis is explored. The results add to the evidence that the laminar ow represents a fundamental limit to the drag reduction achievable by wall transpiration. <b>Section 4.4:</b> A state feedback controller that achieves global asymptotic stabilization of a nonlinear Ginzburg-Landau model of vortex shedding from bluff bodies is designed using backstepping. Stabilization is obtained in two steps. First, the upstream and downstream parts of the system are shown to exhibit the inputto- state stability property with respect to certain boundary input terms governed by the core flow in the vicinity of the bluff body. Second, a finite difference approximation of arbitrary order of the core flow is stabilized using the backstepping method. Consequently, all the states in the core flow are driven to zero, including the boundary input terms of the upstream and downstream subsystems. The control design is valid for any Reynolds number, and simulations demonstrate its performance. <b>Section 5.2:</b> For thefirst time, active feedback control is used to enhance mixing by exploiting the natural tendency in the flow to mix. By applying the pressurebased feedback control law derived for stabilizing the 2D channel flow in Section 4.3.1, with the sign of the input reversed, enhanced instability of the parabolic equilibrium flow is obtained, which leads rapidly to highly complex flow patterns. The mixing enhancement is quantified using various diagnostic tools. <b>Section 5.3: </b>A Lyapunov based boundary feedback controller for achieving mixing in a 3D pipe flow governed by the Navier-Stokes equation is designed. It is shown that the control law maximizes a measure of mixing that incorporates stretching and folding of material elemen ts, while at the same time minim izing the control effort and the sensing effort. The penalty on sensing results in a static output- feedback control law (rather than full-state feedback). A lower bound on the gain from the control effort to the mixing measure is also deriv ed. For the openloop system, input/output-to-state stability properties are established, which show a form of detectability of mixing in the interior of the pipe from the chosen outputs on the wall. The effectiveness of the optimal control in achieving mixing enhancement is demonstrated in numerical sim ulations. Simulation results also show that the spatial changes in the control velocity are smooth and small, promising that a low number of actuators will suffice in practice. <b>Section 5.4: </b>Motivated by the mixing results for channels and pipes in Sections 5.2 and 5.3, a simulation study that investigates the feasibility of enhancing particle dispersion in the wake of a circular cylinder is carried out. For a subcritical case, vortex shedding is successfully provoked using feedback. <b>Main Contributions of Part II</b> Part II deals with modelling and control of slender marine structures and marine vessels. <b>Chapter 8:</b> A new finite element model for a cable suspended in water is developed. Global existence and uniqueness of solutions of the truncated system is shown for a slightly simplified equation describing the motion of a cable with negligible added mass and supported by fixed end-points. Based on this, along with well known results on local existence and uniqueness of solutions for symmetrizable hyperbolic systems, a global result for the initial-boundary value problem is conjectured. The FEM model for the cable is assembled to give a model of a multi-cable mooring system, whic h, in turn, is coupled to a rigid body model of the floating vessel. The result is a coupled dynamical model of a moored v essel, which can be applied to applications such as turret-based moored ships, or tension leg platforms. As a simple application of the sim ulator, controlling the line tensions dynamically as an additional means of station keeping is explored. <b>Chapter 9: </b>Output feedback tracking control laws for a class of Euler-Lagrange systems subject to nonlinear dissipative loads are designed. By imposing a monotone damping condition on the nonlinearities of the unmeasured states, the common restriction that the nonlinearities be globally Lipschitz is removed. The proposed observer-controller scheme renders the origin of the error dynamics uniformly globally asymptotically stable, in the general case. Under certain additional assumptions, the result continue to hold for a simplified control law that is less sensitive to noise and unmodeled phenomena.
4

Modelling of Soot Formation and Oxidation in Turbulent Diffusion Flames

Kleiveland, Rune Natten January 2005 (has links)
Soot and radiation play an important role when designing practical combustion devices, and great efforts have been put into developing models which describe soot formation and oxidation. The Eddy Dissipation Concept (EDC) has proven to describe turbulent combustion well, and has the flexibility to describe chemical kinetics in a detailed manner. The aim of this work is to study how the EDC handles soot models based on a detailed representation of the gas-phase chemical kinetics. Two versions of a semi-empirical soot model is used in conjunction with the EDC. Concentrations of various intermediate species are used as input to the soot models. The implementation of the new soot models is discussed in relation to the previous implementation of a less detailed soot model. To assure that the interaction between soot and the gas-phase species is represented correctly, the soot models are implemented with a two-way coupling of soot and gas-phase kinetics. Soot is a good radiator. In a sooting flame a substantial amount of energy will be transferred to the surroundings by thermal radiation. This transfer of energy will alter the temperature field of the flame and the change in temperature will affect the kinetics of soot and gas-phase chemistry. To simulate sooting flames correctly, it was therefore necessary to include a radiation model. To validate the coupled models of turbulence, combustion, soot, and radiation two different turbulent flames were simulated. One turbulent jet flame of methane and one turbulent jet flame of ethylene. For both flames the computed results were compared with measured values. Several aspects of the simulations are studied and discussed, such as the effect of the two-way coupling of soot and gas-phase kinetics on both soot yield and gas-phase composition, and the importance of a suitable radiation model. The two-way coupling of soot and gas phase kinetics is shown to have a positive effect on the computed soot volume fractions, and the results are considered to be encouraging. The work has demonstrated that the EDC has the capacity to handle different types of chemical reaction mechanisms, such as mechanisms for gas-phase combustion and soot kinetics, without modification.
5

The Miller Cycle on Single-Cylinder and Serial Configurations of a Heavy-Duty Engine / Millercykeln i en Encylindrig och Flercylindrig Lastbilsmotor

Venkataraman, Varun January 2018 (has links)
I jämförelse med sina föregångare, har moderna lastbilsmotorer genomgått en betydandeutveckling och har utvecklats till effektiva kraftmaskiner med låga utsläpp genom införandet avavancerade avgasbehandlingssystem. Trots att de framsteg som gjorts under utvecklingen av lastbilsmotorer har varit betydande, så framhäver de framtida förväntningarna vad gällerprestanda, bränsleförbrukning och emissioner behovet av snabba samt storskaliga förbättringar av dessa parametrar för att förbränningsmotorn ska fortsätta att vara konkurrenskraftig och hållbar. Utmaningen i att uppfylla dessa till synes enkla krav är den invecklade, ogynnsammabalansgång som måste göras mellan parametrarna. Förbränningsmotorns kärna är förbränningsprocessen, som i sin tur är kopplad till motorns luftbehandlings- och bränsleregleringssystem. I denna studie undersöks Millercykeln som en potentiell lösning till att nå de motstridiga kraven för framtida lastbilsmotorer, framförallt med fokus på potentialen att förbättra prestandan samtidigt som NOx-emissionerna hålls på konstantnivå. Traditionellt har utvärderingen av Millercykeln utförts på encylindriga forskningsmotorer, vilket också har utgjort utgångspunkten i denna studie. Även om studier på flercylindriga simuleringsmodeller och forskningsmotorer har gjorts med konstanta inställningar för Millercykeln, så utförs de inte i samband med undersökningar av encylindriga motorer. Dessutom så möts inte kraven från insugssystemet på samma sätt mellan de olika motorkonfigurationerna. Denna studie undersöker och jämför potentialen för ökad prestanda med Miller-cykeln mellan encylindrig och flercylindrig motorkonfiguration för en lastbilsmotor med ett tvåstegs turboladdningssystem, som representerar ett realistiskt insugssystem som möjliggör implementeringen av Millercykeln. För att undersöka motorprestationen så används i denna studie den kommersiella mjukvaran GT-Power. Ytterligare resultat från studien innefattar kvantifiering av prestandakraven för ett högeffektivt tvåstegs turboladdningssystem och dess inverkan på temperaturen i inloppet till avgasbehandlings-systemet. En kvalitativ förståelse av betydelsen av interaktionen mellan cylindrar och effekten på cylinder-cylinder variationer med Millercykel utfördes också i simuleringar med flercylindrig motorkonfiguration. Studien utvärderade Millertiming inom ett intervall på -90 till +90 graders vev vinkel från utgångsvinkeln för stängning av insugsventilen. Utvärderingen utfördes vid systemjämvikt vid en fullastpunkt (1000RPM), där basfallet för både encylindrig och flercylindrig motor för utvärdering av Millercykeln var det välkända fallet med konstant specifik NOx. Ett ytterligare fall framhäver NOx-reduktionspotentialen med Miller vid konstant EGR-flöde på en encylindrig konfiguration. Fallen med ökad prestation realiserades genom att öka lufttillförseln, bränslemängden och det geometriska kompressionsförhållandet. Maximal prestandaökning observerades i fallet med ökad bränslemängd, och endast i detta fall utvärderades även konfigurationen med fler cylindrar för jämförelse av prestationsförbättringen med en encylindrig motsvarighet med Millertiming. Den flercylindriga motorn innefattade EGR som en lågtryckskrets, och medan detta antagande förenklade i avseende på modellering och kontroll, så var det till fördel för konfigurationen meden flercylindrig motor (jämfört med encylindrig) på grund av reducerade pumpförluster. Som påföljd gjordes en jämförande undersökning med encylinder-modellen med motsvarande mottryck för flercylinder-modellen inställt som gränsvärde. Resultaten visar att encylindermodellen representerar medelvärdet för cylindrarna i flercylinder-motorn när lämpligagränsvillkor tillämpas som kontrollparametrar. Studien ger en grund för jämförelse av Millertiming på encylindrig samt flercylindriga konfigurationer, samtidigt som kraven på insugssystemet fastställs och utgör en utgångspunkt föratt utvärdera Millercykeln och bestämma insugssystemets krav för hela motorns arbetsområde. / Modern heavy-duty engines have undergone considerable development over their predecessors and have evolved into efficient performance machines with a reducing emission footprint through the incorporation of advanced aftertreatment systems. Although, the progress achieved in heavy-duty engine development has been significant, the future expectation from heavy-duty engines in terms of performance, fuel consumption and emissions stresses the need for rapid large-scale improvements of these metrics to keep the combustion engine competitive and sustainable. The challenges in resolving these apparently straightforward demands are the intricate unfavourable trade-off that exists among the target metrics. The core of the combustion engine lies in the combustion process which is inherently linked to the air handling and fuel regulating systems of the engine. This study explores adopting the Miller cycle as a potential solution to the conflicting demands placed on future heavy-duty engines with an emphasis on the performance enhancement potential while keeping the specific NOX emission consistent. Traditionally, evaluation of the Miller cycle is performed on single-cylinder research engines and formed the starting point in this study. While studies on full-engine simulation models and test engines with fixed Miller timing have been evaluated, they appear to be performed in isolation of the favoured single-cylinder approach. Additionally, the charging system requirements are not consistently addressed between the two approaches. This study investigates and contrasts the performance enhancement potential of the Miller cycle on single-cylinder and serial enginemodels of a heavy-duty engine along with a two-stage turbocharging system to represent a realistic charging system that enables implementation of Miller timing. The commercial engine performance prediction tool GT-Power was used in this study. Additional outcomes of the study included quantifying the performance demands of a high efficiency two-stage turbocharging system and its impact on the inlet temperature of the exhaust aftertreatment system. A qualitative understanding of the significance of cylinder interaction effects on cylinder-cylinder variations with Miller timing was also performed on the serial engine cases. The study evaluated Miller timing within a range of -90 to +90 CAD from the baseline intake valve close angle. The evaluation was performed at steady-state operation of the engine at one full load point (1000RPM) wherein both the single-cylinder and serial engine Miller evaluation included a base case which characterises the Miller effect for constant specific NOX. An additional case highlights the NOX reduction potential with Miller for a constant EGR rate on the single-cylinder configuration. The performance enhancement cases were realised by increasingthe air mass, fuel mass and the geometric compression ratio. Maximum performance increase was observed in the increased fuel mass case and only this case was evaluated on the serial engine for contrasting single-cylinder and serial engine performance enhancement with Miller timing. The serial engine incorporated EGR as a low-pressure circuit and while this simplified modelling and controller considerations, it led to biasing of results in favour of the serial engine configuration (over the single-cylinder) due to reduced pumping loss. A subsequent comparison case was evaluated on the single-cylinder model with backpressure settings from the serial engine model. The results show that the single-cylinder model is representative of the cylinder averaged responses of the serial engine when appropriate boundary conditions are imposed as controller targets. The study provides a basis for contrasting Miller timing on single-cylinder and serial configurations while determining the charging system requirements and presents a starting point to evaluate Miller timing and determine air system demands over the entire engine operating range.
6

3D Dose Prediction from Partial Dose Calculations using Convolutional Deep Learning models / 3D-dosförutsägelser från partiella dosberäkningar med hjälp av konvolutionella Deep Learning-modeller

Liberman Bronfman, Sergio Felipe January 2021 (has links)
In this thesis, the problem of predicting the full dose distribution from a partially modeled dose calculation is addressed. Two solutions were studied: a vanilla Hierarchically Densely Connected U-net (HDUnet) and a Conditional Generative Adversarial Network (CGAN) with HDUnet as a generator. The CGAN approach is a 3D version of Pix2Pix [1] for Image to Image translation which we name Dose2Dose. The research question that this project tackled is whether the Dose2Dose can learn more effective dose transformations than the vanilla HDUnet. To answer this, the models were trained using dose calculations of phantom slabs generated for the problem in pairs of inputs (doses without magnetic field) and targets (doses with magnetic field). Once trained, the models were evaluated and compared in various aspects. The evidence gathered suggests that the vanilla HDUnet model can learn to generate better dose predictions than the generative model. However, in terms of the resulting dose distributions, the samples generated from the Dose2Dose are as likely to belong to the target dose calculation distribution as those of the vanilla HDUnet. The results contain errors of considerable magnitude, and do not accomplish clinical suitability tests. / I denna avhandling har problemet med att förutsäga full dosfördelning från en delvis modellerad dosberäkning tagits upp. Två lösningar studerades: ett vanilla HDUnet och ett betingat generativt nätverk (CGAN) med HDUnet som generator. CGAN -metoden var en 3D-version av Pix2Pix [1] för översättning av bild till bild med namnet Dose2Dose. Forskningsfrågan som detta projekt tog upp var om Dose2Dose kan lära sig mer effektiva dostransformationer än vanilla HDUnet. För att svara på detta tränades modellerna med hjälp av parvisa dosberäkningar, i indata (doser utan magnetfält) och mål (doser med magnetfält).. När de var tränade utvärderades modellerna och jämfördes i olika aspekter. De samlade bevisen tyder på att Vanilla HDUnet -modellen kan lära sig att generera bättre dosförutsägelser än den generativa modellen. När det gäller de resulterande dosfördelningarna är emellertid de prover som genererats från Dose2Dose lika sannolikt att tillhöra måldosberäkningsfördelningen som de för vanilla HDUnet. Resultaten innehåller stora storleksfel och uppfyller inte kraven för klinisk tillämpbarhet.
7

Forest machinery's safety improvement : – A new approach to fire extinguisher accessibility and durability

Said, Bashar January 2024 (has links)
This bachelor thesis, developed at the Department of Mechanical Engineering, Linaeus Univesity, targets the enhancement of fire extinguisher accessibility and durability on forest machinery for Rottne Industries AB. The study responds to the basic limitations in traditional fire extinguisher storage methods within the forest machinery sector, where current designs fail to provide sufficient robustness and accessibility in forest environments. These challenges are mixed with the physical demands and potential hazards of forest operations.  Through a systematic review of safety measures, this research introduces an innovative concept for a universal fire extinguisher holder adaptable across various models of forest machinery at Rottne Industries AB. The project has a structured product development process, advancing through stages from theoretical design and optimization to 3D CAD modeling and simulation. The resulting design enhances both the structural integrity and functional accessibility of fire extinguishers, significantly improving response capabilities during fire emergencies. This thesis combines advanced engineering principles with appropriate design strategies to deliver a solution that not only increases the accessibility of fire extinguishers but also enhances their durability under operational stresses typical in forestry environments. The findings promise to elevate fire safety standards in forest operations, potentially standardizing fire safety protocols across the forestry sector and specifically advancing the safety agenda of Rottne Industries AB.

Page generated in 0.1384 seconds