• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 11
  • 11
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelos preditivos para LGD / Predictive models for LGD

João Flávio Andrade Silva 04 May 2018 (has links)
As instituições financeiras que pretendem utilizar a IRB (Internal Ratings Based) avançada precisam desenvolver métodos para estimar a componente de risco LGD (Loss Given Default). Desde a década de 1950 são apresentadas propostas para modelagem da PD (Probability of default), em contrapartida, a previsão da LGD somente recebeu maior atenção após a publicação do Acordo Basileia II. A LGD possui ainda uma literatura pequena, se comparada a PD, e não há um método eficiente em termos de acurácia e interpretação como é a regressão logística para a PD. Modelos de regressão para LGD desempenham um papel fundamental na gestão de risco das instituições financeiras. Devido sua importância este trabalho propõe uma metodologia para quantificar a componente de risco LGD. Considerando as características relatadas sobre a distribuição da LGD e na forma flexível que a distribuição beta pode assumir, propomos uma metodologia de estimação da LGD por meio do modelo de regressão beta bimodal inflacionado em zero. Desenvolvemos a distribuição beta bimodal inflacionada em zero, apresentamos algumas propriedades, incluindo momentos, definimos estimadores via máxima verossimilhança e construímos o modelo de regressão para este modelo probabilístico, apresentamos intervalos de confiança assintóticos e teste de hipóteses para este modelo, bem como critérios para seleção de modelos, realizamos um estudo de simulação para avaliar o desempenho dos estimadores de máxima verossimilhança para os parâmetros da distribuição beta bimodal inflacionada em zero. Para comparação com nossa proposta selecionamos os modelos de regressão beta e regressão beta inflacionada, que são abordagens mais usuais, e o algoritmo SVR , devido a significativa superioridade relatada em outros trabalhos. / Financial institutions willing to use the advanced Internal Ratings Based (IRB) need to develop methods to estimate the LGD (Loss Given Default) risk component. Proposals for PD (Probability of default) modeling have been presented since the 1950s, in contrast, LGDs forecast has received more attention only after the publication of the Basel II Accord. LGD also has a small literature, compared to PD, and there is no efficient method in terms of accuracy and interpretation such as logistic regression for PD. Regression models for LGD play a key role in the risk management of financial institutions, due to their importance this work proposes a methodology to quantify the LGD risk component. Considering the characteristics reported on the distribution of LGD and in the flexible form that the beta distribution may assume, we propose a methodology for estimation of LGD using the zero inflated bimodal beta regression model. We developed the zero inflated bimodal beta distribution, presented some properties, including moments, defined estimators via maximum likelihood and constructed the regression model for this probabilistic model, presented asymptotic confidence intervals and hypothesis test for this model, as well as selection criteria of models, we performed a simulation study to evaluate the performance of the maximum likelihood estimators for the parameters of the zero inflated bimodal beta distribution. For comparison with our proposal we selected the beta regression models and inflated beta regression, which are more usual approaches, and the SVR algorithm, due to the significant superiority reported in other studies.
12

Predição de fator de simultaneidade através de modelos de regressão para proporções contínuas / Prediction of simultaneity factor using regression models for continuous proportions.

Luiz Fernando Molinari Zerbinatti 29 February 2008 (has links)
O fator de simultaneidade é fundamental no planejamento de redes de distribuição de gás natural. Trata-se de um multiplicador entre 0 e 1 que ajusta o consumo total teórico de um número de aparelhos de utilização em condições reais. Em 2005 o Instituto de Pesquisas Tecnológicas (IPT) e a Companhia de Gás de São Paulo (COMGÁS) realizaram um estudo no qual determinou-se o fator de simultaneidade em um conjunto de edificações residenciais. Um modelo de regressão foi proposto para expressar o fator de simultaneidade em termos da potência total instalada. O modelo ajustado pode ser utilizado para predizer o fator de simultaneidade em novas edificações. O modelo em questão é um modelo de regressão linear normal no qual a variável resposta é o logaritmo do fator de simultaneidade. Nesta dissertação, o objetivo é investigar outras possibilidades de modelos de regressão adequados aos dados obtidos pelo IPT e pela COMGÁS. Especial atenção é dada ao modelo de regressão beta proposto por Ferrari e Cribari-Neto (Journal of Applied Statistics, 2004) por possuir vantagens sobre o modelo de regressão linear normal. O modelo de regressão beta assume que, dadas as covariáveis, a variável resposta possui distribuição beta, sendo adequado para modelar dados observados no intervalo unitário. Desta forma, a transformação na variável resposta - o fator de simultaneidade - é desnecessária. Além disso, é proposta uma nova abordagem para a predição do fator de simultaneidade, diferente de todas as abordagens pesquisadas na literatura, utilizando a técnica de bootstrap. / The simultaneity factor is fundamental in planning gas distribution networks. It is a multiplicator between 0 and 1 that adjusts the theoretical total consumption of a number of devices to realistic conditions. In 2005, the Instituto de Pesquisas Tecnológicas (IPT) and the Companhia de Gás de São Paulo (COMGÁS) performed a study in which the simultaneity factor of gas consumption in a set of residential buildings have been determined. A regression model was proposed to express the simultaneity factor in terms of the total power of installed equipment. The fitted model can be used to predict the simultaneity factor in new buildings. The model they proposed is a normal linear regression model in which the response variable is the logarithm of the simultaneity factor. In the present dissertation, our aim is to investigate other possible regression models suitable to the data obtained by IPT and CONGÁS. Emphasis is given to the beta regression model proposed by Ferrari and Cribari-Neto (Journal of Applied Statistics, 2004) which has a number of advantages over normal linear regression models. The beta regression model assumes that, given the covariates, the response variable has a beta distribution, which is adequate to model data observed in the unit interval. Therefore, no transformation in the response variable, the simultaneity factor, is needed. Additionally, we present a new approach for the prediction of the simultaneity factor, that is different from all the approaches shown in the literature, using the bootstrap technique.
13

Modelos de regressão beta inflacionados / Inflated beta regression models

Raydonal Ospina Martinez 04 April 2008 (has links)
Nos últimos anos têm sido desenvolvidos modelos de regressão beta, que têm uma variedade de aplicações práticas como, por exemplo, a modelagem de taxas, razões ou proporções. No entanto, é comum que dados na forma de proporções apresentem zeros e/ou uns, o que não permite admitir que os dados provêm de uma distribuição contínua. Nesta tese, são propostas, distribuições de mistura entre uma distribuição beta e uma distribuição de Bernoulli, degenerada em zero e degenerada em um para modelar dados observados nos intervalos [0, 1], [0, 1) e (0, 1], respectivamente. As distribuições propostas são inflacionadas no sentido de que a massa de probabilidade em zero e/ou um excede o que é permitido pela distribuição beta. Propriedades dessas distribuições são estudadas, métodos de estimação por máxima verossimilhança e momentos condicionais são comparados. Aplicações a vários conjuntos de dados reais são examinadas. Desenvolvemos também modelos de regressão beta inflacionados assumindo que a distribuição da variável resposta é beta inflacionada. Estudamos estimação por máxima verossimilhança. Derivamos expressões em forma fechada para o vetor escore, a matriz de informação de Fisher e sua inversa. Discutimos estimação intervalar para diferentes quantidades populacionais (parâmetros de regressão, parâmetro de precisão) e testes de hipóteses assintóticos. Derivamos expressões para o viés de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros, possibilitando a obtenção de estimadores corrigidos que são mais precisos que os não corrigidos em amostras finitas. Finalmente, desenvolvemos técnicas de diagnóstico para os modelos de regressão beta inflacionados, sendo adotado o método de influência local baseado na curvatura normal conforme. Ilustramos a teoria desenvolvida em um conjuntos de dados reais. / The last years have seen new developments in the theory of beta regression models, which are useful for modelling random variables that assume values in the standard unit interval such as proportions, rates and fractions. In many situations, the dependent variable contains zeros and/or ones. In such cases, continuous distributions are not suitable for modeling this kind of data. In this thesis we propose mixed continuous-discrete distributions to model data observed on the intervals [0, 1],[0, 1) and (0, 1]. The proposed distributions are inflated beta distributions in the sense that the probability mass at 0 and/or 1 exceeds what is expected for the beta distribution. Properties of the inflated beta distributions are given. Estimation based on maximum likelihood and conditional moments is discussed and compared. Empirical applications using real data set are provided. Further, we develop inflated beta regression models in which the underlying assumption is that the response follows an inflated beta law. Estimation is performed by maximum likelihood. We provide closed-form expressions for the score function, Fishers information matrix and its inverse. Interval estimation for different population quantities (such as regression parameters, precision parameter, mean response) is discussed and tests of hypotheses on the regression parameters can be performed using asymptotic tests. We also derive the second order biases of the maximum likelihood estimators and use them to define bias-adjusted estimators. The numerical results show that bias reduction can be effective in finite samples. We also develop a set of diagnostic techniques that can be employed to identify departures from the postulated model and influential observations. To that end, we adopt the local influence approach based in the conformal normal curvature. Finally, we consider empirical examples to illustrate the theory developed.

Page generated in 0.1708 seconds