• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 11
  • 11
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um novo resíduo para classes do modelo de regressão beta - linear e não linear.

SANTOS, Evelyne Guimarães dos 24 July 2015 (has links)
Submitted by Irene Nascimento (irene.kessia@ufpe.br) on 2016-02-25T17:44:35Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Evelyne_dissertacao_final .pdf: 1796028 bytes, checksum: aa7ed43f050a05352f39a5b4b1e1e01e (MD5) / Made available in DSpace on 2016-02-25T17:44:35Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Evelyne_dissertacao_final .pdf: 1796028 bytes, checksum: aa7ed43f050a05352f39a5b4b1e1e01e (MD5) Previous issue date: 2015-07-24 / Capes / Em situações em que o objetivo é analisar o comportamento de uma variável em função de outras, os modelos de regressão são muito utilizados. A classe de modelos de regressão beta é utilizada quando se deseja fazer esse tipo de análise e a variável resposta assume valores no intervalo p0, 1q, como é o caso de taxas e proporções. Ferrari e Cribari-Neto (2004) propuseram o modelo de regressão beta que utiliza uma parametrização diferente para a distribuição beta, que é indexada pela média e pelo parâmetro de precisão. Foram desenvolvidas duas extensões para este modelo, uma destas extensões foi proposta por Smithson e Verkulien (2006) e considera a precisão variável, neste caso a média e a precisão são modeladas simultaneamente. Outra extensão, proposta por Simas et al. (2010), considera que a média e/ou a precisão podem ser relacionadas a preditores não lineares. No processo de escolha do modelo que melhor se adequa aos dados há várias etapas envolvidas, uma delas é a análise de resíduos. Entre os objetivos desta etapa estão: detectar a presença de pontos aberrantes, que poderão ser influentes ou não, e por isso devem ser investigados; verificar se a distribuição proposta para a variável resposta e se a função de ligação estão adequadas. O objetivo desta dissertação é propor e avaliar um novo resíduo para o modelo de regressão beta e suas extensões. / When the interest lies in analyzing the behavior of a given variable as a function of other variables regression models are widely used. The class of beta regression models is used when the response variable assumes values in the interval p0, 1q, such as rates and proportions. Ferrari e Cribari-Neto (2004) proposed the beta regression model that uses a different parametrization for the beta distribution, which is indexed by the mean and by a precision parameter. Two extensions have been developed for this model. One of them was proposed by Smithson e Verkulien (2006). In this extension, the mean and precision are modeled simultaneously. Another extension, proposed by Simas et al. (2010), considers that the mean and/or the precision may be related to nonlinear predictors. There are several steps involved in the process of choice of the model that best fits the data, one of them being residuals analysis. Among the objectives of this stage are: to detect the presence of atypical points, which may or may not be influential, and thus should be investigated; to verify if the proposed distribution for the variable response and to determine whether the link functions are appropriate. The aim of this thesis is to propose and to evaluate a new residual which was developed for the beta regression model and its extensions.
2

Ensaios sobre modelos de regressão com dispersão variável

Correia de Souza, Tatiene 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T18:01:26Z (GMT). No. of bitstreams: 2 arquivo629_1.pdf: 8491612 bytes, checksum: a0489fe05bed13111bee7f2e6ac4da2e (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A análise de regressão é uma das técnicas estatísticas mais usadas. Nesta tese são abordados modelos de regressão linear e modelos de regressão beta ambos com dispersão variável. Na primeira etapa da tese, apresentamos o modelo de regressão linear, e na segunda, o modelo de regressão beta. Sob as pressuposições usuais estabelecidas para o modelo linear, a estimação dos parâmetros é usualmente feita pelo método de mínimos quadrados ordinários (MQO). Esse método fornece estimadores com propriedades desejáveis, como não-viciosidade, consistência e eficiência. Entretanto, sob heteroscedasticidade, os estimadores de MQO tornam-se ineficientes e o estimador usual de sua matriz de covariâncias não é consistente. Vários autores propuseram estratégias para estimar de forma consistente a matriz de covariâncias dos estimadores dos parâmetros do modelo de regressão, geralmente baseadas em resíduos de MQO. Estes resíduos, porém, podem ser fortemente influenciados pela presença de pontos de alavanca. Avaliamos os comportamentos dos estimadores HC0, HC3 e HC4 da matriz de covariâncias do estimador de MQO quando resíduos oriundos de regressões robustas (menor mediana dos quadrados, mínimos quadrados podados e mínimos quadrados ponderados) são usados em substituição aos resíduos de MQO, no modelo de regressão com e sem restrição sobre os parâmetros. Os resultados revelaram que o teste construído a partir do estimador HC0 apresenta melhor desempenho quando resíduos oriundos de regressão robusta são utilizados em substituição aos resíduos de MQO, na presença de pontos de alavanca. O desempenho do teste baseado nesse estimador melhora significativamente quando estimação restrita é utilizada, principalmente com resíduos robustos. A mesma conclusão foi obtida na maioria dos cenários estudados sobre o teste baseado no estimador HC3, contudo considerando estimação irrestrita. O teste baseado no estimador HC4 apresenta desempenho superior quando resíduos oriundos do estimador MQO e mínimos quadrados ponderados são utilizados. Diferentemente do modelo de regressão linear, o modelo de regressão beta que foi proposto por Ferrari & Cribari Neto (2004) possui aplicabilidade na modelagem de variáveis do tipo taxas ou proporções. A resposta média é relacionada com um preditor linear que envolve covariáveis e parâmetros de regressão desconhecidos através de uma função de ligação, sendo ainda o modelo indexado por um parâmetro de precisão. Smithson & Verkuilen (2006) apresentaram o modelo de regressão beta em que há estrutura de regressão para o parâmetro de precisão. Em termos práticos, contudo, há certa dificuldade em modelar a precisão. Considerando tal dificuldade, um dos nossos interesses consiste em propor estimadores do tipo sanduíche para modelos de regressão beta em que a estrutura de regressão para o parâmetro de dispersão (o recíproco da precisão) é negligenciada. Adicionalmente, consideramos o caso em que há estrutura de regressão para dispersão, mas a modelamos de forma incorreta através dos preditores e das funções de ligação dos submodelos da média e dispersão. Através de simulações de Monte Carlo, nós avaliamos os desempenhos dos testes baseados nos estimadores sanduíche e comparamos com os desempenhos dos testes z que utilizam os estimadores usuais da matriz de covariâncias. Para ilustrar nossos resultados, apresentamos uma aplicação a dados reais. Considerando o modelo de regressão beta com dispersão variável, um outro objetivo consiste em explicar a diferença entre as proporções de votos válidos do presidente Lula nos segundos turnos das eleições de 2006 e 2002. Adicionalmente, calculamos os impactos dos gastos em programas assistenciais e do crescimento da economia sobre o resultado da eleição presidencial de 2006. Comparando os gastos com programas assistenciais em 2006 e 2002, vale ressaltar que em 2006 o gasto em tais programas foi muito maior do que em 2002. Nós estimamos que, se os gastos com programas assistenciais em 2006 fossem mantidos nos níveis de 2002, haveria uma redução de aproximadamente 7 milhões na votação do ex-presidente Lula. Adicionalmente, estimamos que sem o crescimento da economia, haveria uma redução na votação do ex-presidente Lula de cerca de 2 milhões de votos. Por fim, objetivamos modelar a proporção de ateus e a proporção de pessoas que não acreditam que religião é importante para suas vidas cotidianas em diferentes países. Para isso, consideramos algumas covariáveis, tais como quociente de inteligência, renda nacional bruta ajustada pela paridade no poder de compra, predominância de muçulmanos, grau de abertura da economia e expectativa de vida em cada uma das nações consideradas. Estimamos o impacto do quociente de inteligência sobre a concentração média de ateus e de pessoas que não valorizam religião. Os resultados revelaram que há forte associação positiva entre inteligência e descrença religiosa. Dado que as duas variáveis dependentes consideradas são proporções, aqui também utilizamos o modelo de regressão beta
3

Um teste baseado em influência local para avaliar qualidade do ajuste em modelos de Regressão Beta

RIBEIRO, Terezinha Késsia de Assis 12 February 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-07-26T12:10:38Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) dissertação_final_cd_TT.pdf: 4588819 bytes, checksum: 5127176322bfc06990cbd3eaa1fc5687 (MD5) / Made available in DSpace on 2016-07-26T12:10:38Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) dissertação_final_cd_TT.pdf: 4588819 bytes, checksum: 5127176322bfc06990cbd3eaa1fc5687 (MD5) Previous issue date: 2016-02-12 / CAPEs / A classe de modelos de regressão beta introduzida por Ferrari & Cribari-Neto (2004) é muito útil para modelar taxas e proporções. O modelo proposto pelos autores é baseado na suposição de que a variável resposta tem distribuição beta com uma parametrização que é indexada pela média e por um parâmetro de precisão. Após a construção de um modelo de regressão é de extrema importância realizar a análise de diagnóstico, objetivando verificar possíveis afastamentos das suposições feitas para o modelo apresentado, bem como detectar possíveis observações que causem influência desproporcional nas estimativas dos parâmetros. A análise de influência local introduzida por Cook (1986) é uma abordagem que objetiva avaliar a influência das observações. Com base no método de influência local, Zhu & Zhang (2004) propuseram um teste de hipóteses para detectar o grau de discrepância entre o modelo suposto e o modelo subjacente do qual dos dados são gerados. Nesse trabalho, foi densenvolvido esse teste para o modelo de regressão beta com dispersão fixa e variável, como também, foram propostos um melhoramento nesse teste baseados na metodologia bootstrap e um novo teste, também com base em influência local, mas considerando outro esquema de perturbação, a perturbação no parâmetro de precisão no modelo de regressão beta com dispersão fixa. O desempenho desses testes foram avaliados com base no tamanho e poder. Por fim, aplicamos a teoria desenvolvida a um conjunto de dados reais. / The class of beta regression models introduced by Ferrari & Cribari-Neto (2004) is very useful for modelling rates and proportions. The proposed model by the authors is based on the assumption that the response variable is beta distributed with indexed by mean and dispersion parameters. After fitting a regression model is very important to carry out the diagnostic analysis in sense that, verifying possible deviations of the model assumptions, as well as detect possible observations that cause disproportionate influence on the parameter estimates. The local influence analysis introduced by Cook (1986) is an approach that objective assess the influence of observations. Based on local influence method, Zhu & Zhang (2004) proposed a hypothesis test to detect the degree of discrepancy between the supposed model and the underlying model from which the data is generated. In this work, was developed this test for the beta regression model with fixed and varying dispersion, as well as, we proposed in addition, an improvement of this test based on bootstrap methodology and a new test, also based on local influence, but considering other perturbation scheme, the perturbation of the precision parameter in beta regression model with fixed dispersion. The performance of these tests were evaluated based on size and power. Finally, we applied the theory developed to a set of real data.
4

Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais / Beta regression models with normal and not normal random effects for longitudinal data

Usuga Manco, Olga Cecilia 01 March 2013 (has links)
A classe de modelos de regressão beta tem sido estudada amplamente. Porém, para esta classe de modelos existem poucos trabalhos sobre a inclusão de efeitos aleatórios e a flexibilização da distribuição dos efeitos aleatórios, além de métodos de predição e de diagnóstico no ponto de vista dos efeitos aleatórios. Neste trabalho são propostos modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais. Os métodos de estimação de parâmetros e de predição dos efeitos aleatórios usados no trabalho são o método de máxima verossimilhança e o método do melhor preditor de Bayes empírico. Para aproximar a função de verossimilhança foi utilizada a quadratura de Gauss-Hermite. Métodos de seleção de modelos e análise de resíduos também foram propostos. Foi implementado o pacote BLMM no R para a realização de todos os procedimentos. O processo de estimação os parâmetros dos modelos e a distribuição empírica dos resíduos propostos foram analisados por meio de estudos de simulação. Foram consideradas várias distribuições para os efeitos aleatórios, valores para o número de indivíduos, número de observações por indivíduo e estruturas de variância-covariância para os efeitos aleatórios. Os resultados dos estudos de simulação mostraram que o processo de estimação obtém melhores resultados quando o número de indivíduos e o número de observações por indivíduo aumenta. Estes estudos também mostraram que o resíduo quantil aleatorizado segue uma distribuição aproximadamente normal. A metodologia apresentada é uma ferramenta completa para analisar dados longitudinais contínuos que estão restritos ao intervalo limitado (0; 1). / The class of beta regression models has been studied extensively. However, there are few studies on the inclusion of random effects and models with flexible random effects distributions besides prediction and diagnostic methods. In this work we proposed a beta regression models with normal and not normal random effects for longitudinal data. The maximum likelihood method and the empirical Bayes approach are used to obtain the estimates and the best prediction. Also, the Gauss-Hermite quadrature is used to approximate the likelihood function. Model selection methods and residual analysis were also proposed.We implemented a BLMM package in R to perform all procedures. The estimation procedure and the empirical distribution of residuals were analyzed through simulation studies considering differents random effects distributions, values for the number of individuals, number of observations per individual and covariance structures for the random effects. The results of simulation studies showed that the estimation procedure obtain better results when the number of individuals and the number of observations per individual increase. These studies also showed that the empirical distribution of the quantile randomized residual follows a normal distribution. The methodolgy presented is a tool for analyzing longitudinal data restricted to a interval (0; 1).
5

Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais / Beta regression models with normal and not normal random effects for longitudinal data

Olga Cecilia Usuga Manco 01 March 2013 (has links)
A classe de modelos de regressão beta tem sido estudada amplamente. Porém, para esta classe de modelos existem poucos trabalhos sobre a inclusão de efeitos aleatórios e a flexibilização da distribuição dos efeitos aleatórios, além de métodos de predição e de diagnóstico no ponto de vista dos efeitos aleatórios. Neste trabalho são propostos modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais. Os métodos de estimação de parâmetros e de predição dos efeitos aleatórios usados no trabalho são o método de máxima verossimilhança e o método do melhor preditor de Bayes empírico. Para aproximar a função de verossimilhança foi utilizada a quadratura de Gauss-Hermite. Métodos de seleção de modelos e análise de resíduos também foram propostos. Foi implementado o pacote BLMM no R para a realização de todos os procedimentos. O processo de estimação os parâmetros dos modelos e a distribuição empírica dos resíduos propostos foram analisados por meio de estudos de simulação. Foram consideradas várias distribuições para os efeitos aleatórios, valores para o número de indivíduos, número de observações por indivíduo e estruturas de variância-covariância para os efeitos aleatórios. Os resultados dos estudos de simulação mostraram que o processo de estimação obtém melhores resultados quando o número de indivíduos e o número de observações por indivíduo aumenta. Estes estudos também mostraram que o resíduo quantil aleatorizado segue uma distribuição aproximadamente normal. A metodologia apresentada é uma ferramenta completa para analisar dados longitudinais contínuos que estão restritos ao intervalo limitado (0; 1). / The class of beta regression models has been studied extensively. However, there are few studies on the inclusion of random effects and models with flexible random effects distributions besides prediction and diagnostic methods. In this work we proposed a beta regression models with normal and not normal random effects for longitudinal data. The maximum likelihood method and the empirical Bayes approach are used to obtain the estimates and the best prediction. Also, the Gauss-Hermite quadrature is used to approximate the likelihood function. Model selection methods and residual analysis were also proposed.We implemented a BLMM package in R to perform all procedures. The estimation procedure and the empirical distribution of residuals were analyzed through simulation studies considering differents random effects distributions, values for the number of individuals, number of observations per individual and covariance structures for the random effects. The results of simulation studies showed that the estimation procedure obtain better results when the number of individuals and the number of observations per individual increase. These studies also showed that the empirical distribution of the quantile randomized residual follows a normal distribution. The methodolgy presented is a tool for analyzing longitudinal data restricted to a interval (0; 1).
6

Modelos preditivos para LGD / Predictive models for LGD

Silva, João Flávio Andrade 04 May 2018 (has links)
As instituições financeiras que pretendem utilizar a IRB (Internal Ratings Based) avançada precisam desenvolver métodos para estimar a componente de risco LGD (Loss Given Default). Desde a década de 1950 são apresentadas propostas para modelagem da PD (Probability of default), em contrapartida, a previsão da LGD somente recebeu maior atenção após a publicação do Acordo Basileia II. A LGD possui ainda uma literatura pequena, se comparada a PD, e não há um método eficiente em termos de acurácia e interpretação como é a regressão logística para a PD. Modelos de regressão para LGD desempenham um papel fundamental na gestão de risco das instituições financeiras. Devido sua importância este trabalho propõe uma metodologia para quantificar a componente de risco LGD. Considerando as características relatadas sobre a distribuição da LGD e na forma flexível que a distribuição beta pode assumir, propomos uma metodologia de estimação da LGD por meio do modelo de regressão beta bimodal inflacionado em zero. Desenvolvemos a distribuição beta bimodal inflacionada em zero, apresentamos algumas propriedades, incluindo momentos, definimos estimadores via máxima verossimilhança e construímos o modelo de regressão para este modelo probabilístico, apresentamos intervalos de confiança assintóticos e teste de hipóteses para este modelo, bem como critérios para seleção de modelos, realizamos um estudo de simulação para avaliar o desempenho dos estimadores de máxima verossimilhança para os parâmetros da distribuição beta bimodal inflacionada em zero. Para comparação com nossa proposta selecionamos os modelos de regressão beta e regressão beta inflacionada, que são abordagens mais usuais, e o algoritmo SVR , devido a significativa superioridade relatada em outros trabalhos. / Financial institutions willing to use the advanced Internal Ratings Based (IRB) need to develop methods to estimate the LGD (Loss Given Default) risk component. Proposals for PD (Probability of default) modeling have been presented since the 1950s, in contrast, LGDs forecast has received more attention only after the publication of the Basel II Accord. LGD also has a small literature, compared to PD, and there is no efficient method in terms of accuracy and interpretation such as logistic regression for PD. Regression models for LGD play a key role in the risk management of financial institutions, due to their importance this work proposes a methodology to quantify the LGD risk component. Considering the characteristics reported on the distribution of LGD and in the flexible form that the beta distribution may assume, we propose a methodology for estimation of LGD using the zero inflated bimodal beta regression model. We developed the zero inflated bimodal beta distribution, presented some properties, including moments, defined estimators via maximum likelihood and constructed the regression model for this probabilistic model, presented asymptotic confidence intervals and hypothesis test for this model, as well as selection criteria of models, we performed a simulation study to evaluate the performance of the maximum likelihood estimators for the parameters of the zero inflated bimodal beta distribution. For comparison with our proposal we selected the beta regression models and inflated beta regression, which are more usual approaches, and the SVR algorithm, due to the significant superiority reported in other studies.
7

Modelos de regressão beta inflacionados / Inflated beta regression models

Ospina Martinez, Raydonal 04 April 2008 (has links)
Nos últimos anos têm sido desenvolvidos modelos de regressão beta, que têm uma variedade de aplicações práticas como, por exemplo, a modelagem de taxas, razões ou proporções. No entanto, é comum que dados na forma de proporções apresentem zeros e/ou uns, o que não permite admitir que os dados provêm de uma distribuição contínua. Nesta tese, são propostas, distribuições de mistura entre uma distribuição beta e uma distribuição de Bernoulli, degenerada em zero e degenerada em um para modelar dados observados nos intervalos [0, 1], [0, 1) e (0, 1], respectivamente. As distribuições propostas são inflacionadas no sentido de que a massa de probabilidade em zero e/ou um excede o que é permitido pela distribuição beta. Propriedades dessas distribuições são estudadas, métodos de estimação por máxima verossimilhança e momentos condicionais são comparados. Aplicações a vários conjuntos de dados reais são examinadas. Desenvolvemos também modelos de regressão beta inflacionados assumindo que a distribuição da variável resposta é beta inflacionada. Estudamos estimação por máxima verossimilhança. Derivamos expressões em forma fechada para o vetor escore, a matriz de informação de Fisher e sua inversa. Discutimos estimação intervalar para diferentes quantidades populacionais (parâmetros de regressão, parâmetro de precisão) e testes de hipóteses assintóticos. Derivamos expressões para o viés de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros, possibilitando a obtenção de estimadores corrigidos que são mais precisos que os não corrigidos em amostras finitas. Finalmente, desenvolvemos técnicas de diagnóstico para os modelos de regressão beta inflacionados, sendo adotado o método de influência local baseado na curvatura normal conforme. Ilustramos a teoria desenvolvida em um conjuntos de dados reais. / The last years have seen new developments in the theory of beta regression models, which are useful for modelling random variables that assume values in the standard unit interval such as proportions, rates and fractions. In many situations, the dependent variable contains zeros and/or ones. In such cases, continuous distributions are not suitable for modeling this kind of data. In this thesis we propose mixed continuous-discrete distributions to model data observed on the intervals [0, 1],[0, 1) and (0, 1]. The proposed distributions are inflated beta distributions in the sense that the probability mass at 0 and/or 1 exceeds what is expected for the beta distribution. Properties of the inflated beta distributions are given. Estimation based on maximum likelihood and conditional moments is discussed and compared. Empirical applications using real data set are provided. Further, we develop inflated beta regression models in which the underlying assumption is that the response follows an inflated beta law. Estimation is performed by maximum likelihood. We provide closed-form expressions for the score function, Fishers information matrix and its inverse. Interval estimation for different population quantities (such as regression parameters, precision parameter, mean response) is discussed and tests of hypotheses on the regression parameters can be performed using asymptotic tests. We also derive the second order biases of the maximum likelihood estimators and use them to define bias-adjusted estimators. The numerical results show that bias reduction can be effective in finite samples. We also develop a set of diagnostic techniques that can be employed to identify departures from the postulated model and influential observations. To that end, we adopt the local influence approach based in the conformal normal curvature. Finally, we consider empirical examples to illustrate the theory developed.
8

Modelos de regressão beta com erro nas variáveis / Beta regression model with measurement error

Carrasco, Jalmar Manuel Farfan 25 May 2012 (has links)
Neste trabalho de tese propomos um modelo de regressão beta com erros de medida. Esta proposta é uma área inexplorada em modelos não lineares na presença de erros de medição. Abordamos metodologias de estimação, como máxima verossimilhança aproximada, máxima pseudo-verossimilhança aproximada e calibração da regressão. O método de máxima verossimilhança aproximada determina as estimativas maximizando diretamente o logaritmo da função de verossimilhança. O método de máxima pseudo-verossimilhança aproximada é utilizado quando a inferência em um determinado modelo envolve apenas alguns mas não todos os parâmetros. Nesse sentido, dizemos que o modelo apresenta parâmetros de interesse como também de perturbação. Quando substituímos a verdadeira covariável (variável não observada) por uma estimativa da esperança condicional da variável não observada dada a observada, o método é conhecido como calibração da regressão. Comparamos as metodologias de estimação mediante um estudo de simulação de Monte Carlo. Este estudo de simulação evidenciou que os métodos de máxima verossimilhança aproximada e máxima pseudo-verossimilhança aproximada tiveram melhor desempenho frente aos métodos de calibração da regressão e naïve (ingênuo). Utilizamos a linguagem de programação Ox (Doornik, 2011) como suporte computacional. Encontramos a distribuição assintótica dos estimadores, com o objetivo de calcular intervalos de confiança e testar hipóteses, tal como propõem Carroll et. al.(2006, Seção A.6.6), Guolo (2011) e Gong e Samaniego (1981). Ademais, são utilizadas as estatísticas da razão de verossimilhanças e gradiente para testar hipóteses. Num estudo de simulação realizado, avaliamos o desempenho dos testes da razão de verossimilhanças e gradiente. Desenvolvemos técnicas de diagnóstico para o modelo de regressão beta com erros de medida. Propomos o resíduo ponderado padronizado tal como definem Espinheira (2008) com o objetivo de verificar as suposições assumidas ao modelo e detectar pontos aberrantes. Medidas de influência global, tais como a distância de Cook generalizada e o afastamento da verossimilhança, são utilizadas para detectar pontos influentes. Além disso, utilizamos a técnica de influência local conformal sob três esquemas de perturbação (ponderação de casos, perturbação da variável resposta e perturbação da covariável com e sem erros de medida). Aplicamos nossos resultados a dois conjuntos de dados reais para exemplificar a teoria desenvolvida. Finalmente, apresentamos algumas conclusões e possíveis trabalhos futuros. / In this thesis, we propose a beta regression model with measurement error. Among nonlinear models with measurement error, such a model has not been studied extensively. Here, we discuss estimation methods such as maximum likelihood, pseudo-maximum likelihood, and regression calibration methods. The maximum likelihood method estimates parameters by directly maximizing the logarithm of the likelihood function. The pseudo-maximum likelihood method is used when the inference in a given model involves only some but not all parameters. Hence, we say that the model under study presents parameters of interest, as well as nuisance parameters. When we replace the true covariate (observed variable) with conditional estimates of the unobserved variable given the observed variable, the method is known as regression calibration. We compare the aforementioned estimation methods through a Monte Carlo simulation study. This simulation study shows that maximum likelihood and pseudo-maximum likelihood methods perform better than the calibration regression method and the naïve approach. We use the programming language Ox (Doornik, 2011) as a computational tool. We calculate the asymptotic distribution of estimators in order to calculate confidence intervals and test hypotheses, as proposed by Carroll et. al (2006, Section A.6.6), Guolo (2011) and Gong and Samaniego (1981). Moreover, we use the likelihood ratio and gradient statistics to test hypotheses. We carry out a simulation study to evaluate the performance of the likelihood ratio and gradient tests. We develop diagnostic tests for the beta regression model with measurement error. We propose weighted standardized residuals as defined by Espinheira (2008) to verify the assumptions made for the model and to detect outliers. The measures of global influence, such as the generalized Cook\'s distance and likelihood distance, are used to detect influential points. In addition, we use the conformal approach for evaluating local influence for three perturbation schemes: case-weight perturbation, respose variable perturbation, and perturbation in the covariate with and without measurement error. We apply our results to two sets of real data to illustrate the theory developed. Finally, we present our conclusions and possible future work.
9

Predição de fator de simultaneidade através de modelos de regressão para proporções contínuas / Prediction of simultaneity factor using regression models for continuous proportions.

Zerbinatti, Luiz Fernando Molinari 29 February 2008 (has links)
O fator de simultaneidade é fundamental no planejamento de redes de distribuição de gás natural. Trata-se de um multiplicador entre 0 e 1 que ajusta o consumo total teórico de um número de aparelhos de utilização em condições reais. Em 2005 o Instituto de Pesquisas Tecnológicas (IPT) e a Companhia de Gás de São Paulo (COMGÁS) realizaram um estudo no qual determinou-se o fator de simultaneidade em um conjunto de edificações residenciais. Um modelo de regressão foi proposto para expressar o fator de simultaneidade em termos da potência total instalada. O modelo ajustado pode ser utilizado para predizer o fator de simultaneidade em novas edificações. O modelo em questão é um modelo de regressão linear normal no qual a variável resposta é o logaritmo do fator de simultaneidade. Nesta dissertação, o objetivo é investigar outras possibilidades de modelos de regressão adequados aos dados obtidos pelo IPT e pela COMGÁS. Especial atenção é dada ao modelo de regressão beta proposto por Ferrari e Cribari-Neto (Journal of Applied Statistics, 2004) por possuir vantagens sobre o modelo de regressão linear normal. O modelo de regressão beta assume que, dadas as covariáveis, a variável resposta possui distribuição beta, sendo adequado para modelar dados observados no intervalo unitário. Desta forma, a transformação na variável resposta - o fator de simultaneidade - é desnecessária. Além disso, é proposta uma nova abordagem para a predição do fator de simultaneidade, diferente de todas as abordagens pesquisadas na literatura, utilizando a técnica de bootstrap. / The simultaneity factor is fundamental in planning gas distribution networks. It is a multiplicator between 0 and 1 that adjusts the theoretical total consumption of a number of devices to realistic conditions. In 2005, the Instituto de Pesquisas Tecnológicas (IPT) and the Companhia de Gás de São Paulo (COMGÁS) performed a study in which the simultaneity factor of gas consumption in a set of residential buildings have been determined. A regression model was proposed to express the simultaneity factor in terms of the total power of installed equipment. The fitted model can be used to predict the simultaneity factor in new buildings. The model they proposed is a normal linear regression model in which the response variable is the logarithm of the simultaneity factor. In the present dissertation, our aim is to investigate other possible regression models suitable to the data obtained by IPT and CONGÁS. Emphasis is given to the beta regression model proposed by Ferrari and Cribari-Neto (Journal of Applied Statistics, 2004) which has a number of advantages over normal linear regression models. The beta regression model assumes that, given the covariates, the response variable has a beta distribution, which is adequate to model data observed in the unit interval. Therefore, no transformation in the response variable, the simultaneity factor, is needed. Additionally, we present a new approach for the prediction of the simultaneity factor, that is different from all the approaches shown in the literature, using the bootstrap technique.
10

Modelos de regressão beta com erro nas variáveis / Beta regression model with measurement error

Jalmar Manuel Farfan Carrasco 25 May 2012 (has links)
Neste trabalho de tese propomos um modelo de regressão beta com erros de medida. Esta proposta é uma área inexplorada em modelos não lineares na presença de erros de medição. Abordamos metodologias de estimação, como máxima verossimilhança aproximada, máxima pseudo-verossimilhança aproximada e calibração da regressão. O método de máxima verossimilhança aproximada determina as estimativas maximizando diretamente o logaritmo da função de verossimilhança. O método de máxima pseudo-verossimilhança aproximada é utilizado quando a inferência em um determinado modelo envolve apenas alguns mas não todos os parâmetros. Nesse sentido, dizemos que o modelo apresenta parâmetros de interesse como também de perturbação. Quando substituímos a verdadeira covariável (variável não observada) por uma estimativa da esperança condicional da variável não observada dada a observada, o método é conhecido como calibração da regressão. Comparamos as metodologias de estimação mediante um estudo de simulação de Monte Carlo. Este estudo de simulação evidenciou que os métodos de máxima verossimilhança aproximada e máxima pseudo-verossimilhança aproximada tiveram melhor desempenho frente aos métodos de calibração da regressão e naïve (ingênuo). Utilizamos a linguagem de programação Ox (Doornik, 2011) como suporte computacional. Encontramos a distribuição assintótica dos estimadores, com o objetivo de calcular intervalos de confiança e testar hipóteses, tal como propõem Carroll et. al.(2006, Seção A.6.6), Guolo (2011) e Gong e Samaniego (1981). Ademais, são utilizadas as estatísticas da razão de verossimilhanças e gradiente para testar hipóteses. Num estudo de simulação realizado, avaliamos o desempenho dos testes da razão de verossimilhanças e gradiente. Desenvolvemos técnicas de diagnóstico para o modelo de regressão beta com erros de medida. Propomos o resíduo ponderado padronizado tal como definem Espinheira (2008) com o objetivo de verificar as suposições assumidas ao modelo e detectar pontos aberrantes. Medidas de influência global, tais como a distância de Cook generalizada e o afastamento da verossimilhança, são utilizadas para detectar pontos influentes. Além disso, utilizamos a técnica de influência local conformal sob três esquemas de perturbação (ponderação de casos, perturbação da variável resposta e perturbação da covariável com e sem erros de medida). Aplicamos nossos resultados a dois conjuntos de dados reais para exemplificar a teoria desenvolvida. Finalmente, apresentamos algumas conclusões e possíveis trabalhos futuros. / In this thesis, we propose a beta regression model with measurement error. Among nonlinear models with measurement error, such a model has not been studied extensively. Here, we discuss estimation methods such as maximum likelihood, pseudo-maximum likelihood, and regression calibration methods. The maximum likelihood method estimates parameters by directly maximizing the logarithm of the likelihood function. The pseudo-maximum likelihood method is used when the inference in a given model involves only some but not all parameters. Hence, we say that the model under study presents parameters of interest, as well as nuisance parameters. When we replace the true covariate (observed variable) with conditional estimates of the unobserved variable given the observed variable, the method is known as regression calibration. We compare the aforementioned estimation methods through a Monte Carlo simulation study. This simulation study shows that maximum likelihood and pseudo-maximum likelihood methods perform better than the calibration regression method and the naïve approach. We use the programming language Ox (Doornik, 2011) as a computational tool. We calculate the asymptotic distribution of estimators in order to calculate confidence intervals and test hypotheses, as proposed by Carroll et. al (2006, Section A.6.6), Guolo (2011) and Gong and Samaniego (1981). Moreover, we use the likelihood ratio and gradient statistics to test hypotheses. We carry out a simulation study to evaluate the performance of the likelihood ratio and gradient tests. We develop diagnostic tests for the beta regression model with measurement error. We propose weighted standardized residuals as defined by Espinheira (2008) to verify the assumptions made for the model and to detect outliers. The measures of global influence, such as the generalized Cook\'s distance and likelihood distance, are used to detect influential points. In addition, we use the conformal approach for evaluating local influence for three perturbation schemes: case-weight perturbation, respose variable perturbation, and perturbation in the covariate with and without measurement error. We apply our results to two sets of real data to illustrate the theory developed. Finally, we present our conclusions and possible future work.

Page generated in 0.1033 seconds