• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 473
  • 159
  • 54
  • 52
  • 50
  • 34
  • 24
  • 20
  • 20
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 1086
  • 171
  • 121
  • 106
  • 94
  • 79
  • 72
  • 71
  • 69
  • 67
  • 65
  • 63
  • 62
  • 60
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

The leaf identification problem : natural scene statistics and human performance

Ing, Almon David 21 September 2010 (has links)
For animals with advanced nervous systems, survival and reproduction can depend upon accurate perception of the environment. To understand how a perceptual system should solve a perception task, it is important to consider designs for an ideal observer, a theoretical system that solves a perception task in an optimal way given specific constraints. I studied three specific classification tasks related to the problem of identifying and segmenting leaves in foliage-rich images. In order to derive the ideal observers for these tasks, I created a database of hand-segmented leaves which served to define the ground-truth for these tasks. I also created a new method that uses the ground-truth as a basis for performing statistical inference (classification) in a nearly optimal way. This made it possible for me to approximate ideal observers by approximating an optimal classifier for each task. I also conducted psychophysical experiments to measure human performance in these tasks. The results provide information about how the human visual system should and does interpret foliage-rich images. / text
372

Periods of modular forms and central values of L-functions

Hopkins, Kimberly Michele 21 October 2010 (has links)
This thesis is comprised of three problems in number theory. The introduction is Chapter 1. The first problem is to partially generalize the main theorem of Gross, Kohnen and Zagier to higher weight modular forms. In Chapter 2, we present two conjectures which do this and some partial results towards their proofs as well as numerical examples. This work provides a new method to compute coefficients of weight k+1/2 modular forms for k>1 and to compute the square roots of central values of L-functions of weight 2k>2 modular forms. Chapter 3 presents four different interpretations of the main construction in Chapter 2. In particular we prove our conjectures are consistent with those of Beilinson and Bloch. The second problem in this thesis is to find an arithmetic formula for the central value of a certain Hecke L-series in the spirit of Waldspurger's results. This is done in Chapter 4 by using a correspondence between special points in Siegel space and maximal orders in quaternion algebras. The third problem is to find a lower bound for the cardinality of the principal genus group of binary quadratic forms of a fixed discriminant. Chapter 5 is joint work with Jeffrey Stopple and gives two such bounds. / text
373

MODULAR FAST DIRECT ANALYSIS USING NON-RADIATING LOCAL-GLOBAL SOLUTION MODES

Xu, Xin 01 January 2008 (has links)
This dissertation proposes a modular fast direct (MFD) analysis method for a class of problems involving a large fixed platform region and a smaller, variable design region. A modular solution algorithm is obtained by first decomposing the problem geometry into platform and design regions. The two regions are effectively detached from one another using basic equivalence concepts. Equivalence principles allow the total system model to be constructed in terms of independent interaction modules associated with the platform and design regions. These modules include interactions with the equivalent surface that bounds the design region. This dissertation discusses how to analyze (fill and factor) each of these modules separately and how to subsequently compose the solution to the original system using the separately analyzed modules. The focus of this effort is on surface integral equation formulations of electromagnetic scattering from conductors and dielectrics. In order to treat large problems, it is necessary to work with sparse representations of the underlying system matrix and other, related matrices. Fortunately, a number of such representations are available. In the following, we will primarily use the adaptive cross approximation (ACA) to fill the multilevel simply sparse method (MLSSM) representation of the system matrix. The MLSSM provides a sparse representation that is similar to the multilevel fast multipole method. Solutions to the linear systems obtained using the modular analysis strategies described above are obtained using direct methods based on the local-global solution (LOGOS) method. In particular, the LOGOS factorization provides a data sparse factorization of the MLSSM representation of the system matrix. In addition, the LOGOS solver also provides an approximate sparse factorization of the inverse of the system matrix. The availability of the inverse eases the development of the MFD method. Because the behavior of the LOGOS factorization is critical to the development of the proposed MFD method, a significant part of this dissertation is devoted to providing additional analyses, improvements, and characterizations of LOGOS-based direct solution methods. These further developments of the LOGOS factorization algorithms and their application to the development of the MFD method comprise the most significant contributions of this dissertation.
374

Real-time Simulation of Modular Multilevel Converters

Dominic, Paradis 09 December 2013 (has links)
This thesis presents the real-time simulation of a realistic-size Modular Multilevel Converter (MMC) based High-Voltage Direct Current (HVDC) transmission system. Based on the concept of time-varying Thevenin equivalent, a computationally efficient model of the MMC is developed and deployed on an FPGA platform. The salient features of the developed MMC model are: (i) The decoupling of the solutions of the MMC model and the of the rest of the system, (ii) it provides an equivalent representation of the full MMC, (iii) it is suitable for parallel implementation. The model is used as part of the simulation of the 401-level France/Spain MMC-HVDC link between, in which 2 separate MMCs are included, showing the expandability of the designed system to larger DC grid scenarios. Hardware in the loop (HIL) testing capabilities of the system are also demonstrated with the addition of an external controller to the simulation system.
375

Real-time Simulation of Modular Multilevel Converters

Dominic, Paradis 09 December 2013 (has links)
This thesis presents the real-time simulation of a realistic-size Modular Multilevel Converter (MMC) based High-Voltage Direct Current (HVDC) transmission system. Based on the concept of time-varying Thevenin equivalent, a computationally efficient model of the MMC is developed and deployed on an FPGA platform. The salient features of the developed MMC model are: (i) The decoupling of the solutions of the MMC model and the of the rest of the system, (ii) it provides an equivalent representation of the full MMC, (iii) it is suitable for parallel implementation. The model is used as part of the simulation of the 401-level France/Spain MMC-HVDC link between, in which 2 separate MMCs are included, showing the expandability of the designed system to larger DC grid scenarios. Hardware in the loop (HIL) testing capabilities of the system are also demonstrated with the addition of an external controller to the simulation system.
376

FATIGUE PERFORMANCE OF A HYBRID CFRP/STEEL SPLICE DETAIL FOR MODULAR BRIDGE EXPANSION JOINTS

Arcovio, STEFANO 24 July 2013 (has links)
As traffic demand on bridges increases, loading cycles on critical components will increase, reducing their service life. Modular bridge expansion joints, which are imperative to allowing the bridge superstructure to move, are susceptible to fatigue damage at their field splice. These splices are used to connect segments of the total joint, during staged construction. Current splice designs are either bolted or welded connections, which allow stress concentrations to induce pre-mature fatigue failure. This thesis examines the use of a hybrid FRP/steel design under fatigue loading for use as a splice detail. The splice detail consists of steel plates bolted to steel beam webs and CFRP pultruded plates adhesively bonded to the underside of the steel beam flanges. Two different moduli of CFRP were examined: Normal Modulus and Ultra High Modulus. Two beams of each modulus were tested under static conditions and six under constant amplitude fatigue loading. A testing rig was used to simulate similar bending moments experienced in bridge joints. In the static tests, slippage of the web plates caused considerable stiffness loss and the slippage load varied drastically between CFRP moduli. For the fatigue tests, the intention was to reach two million cycles at the different constant load ranges. Stiffness degradation was noticed during the fatigue process, and was likely due to bolt pre-tension loss and/or plastic deformation of the adhesive. Specimens that reached two million cycles were monotonically loaded to failure. Once the CFRP had failed, a secondary mechanism was observed for reserve load capacity. Simple beam mechanics were used to create prediction models for the initial spliced beam stiffness and peak CFRP load. Flexural and shear deformations of the spliced system were considered for beam stiffness. For the CFRP failure load prediction, a design peak strain in the CFRP was used to account for shear lag effects in the material and variability of the splice detail. While the model was inaccurate for beam stiffness, it provided a good approximate of the peak CFRP load. Based on the presented test data, the Normal Modulus CFRP hybrid splice detail showed better fatigue performance than conventional steel connection details. / Thesis (Master, Civil Engineering) -- Queen's University, 2013-07-24 11:28:19.728
377

Modular structure of chiral Fermi fields in conformal quantum field theory

Tedesco, Gennaro 05 September 2014 (has links)
No description available.
378

Effective aspects : A typed monadic model to control and reason about aspect interference

Figueroa, Ismael 22 April 2014 (has links) (PDF)
Aspect-oriented programming (AOP) aims to enhance modularity and reusability in software systems by offering an abstraction mechanism to deal with crosscutting concerns. But, in most general-purpose aspect languages aspects have almost unrestricted power, eventually conflicting with these goals. This work presents Effective Aspects: a novel approach to embed the pointcut/advice model of AOP in a statically-typed functional programming language like Haskell; along two main contributions. First, we define a monadic embedding of the full pointcut/advicemodel of AOP. Type soundness is guaranteed by exploiting the underlying type system, in particular phantom types and a new anti-unification type class. In this model aspects are first-class, can be deployed dynamically, and the pointcut language is extensible, therefore combining the flexibility of dynamically-typed aspect languages with the guarantees of a static type system. Monads enable us to directly reason about computational effects both in aspects and base programs using traditional monadic techniques. Using this we extend the notion of Open Modules with effects, and also with protected pointcut interfaces to external advising. These restrictions are enforced statically using the type system. Also, we adapt the techniques of EffectiveAdvice to reason about and enforce control flow properties as well as to control effect interference. We show that the parametricity-based approach to effect interference falls short in the presence of multiple aspects and propose a different approach using monad views, a novel technique for handling the monad stack, developed by Schrijvers and Oliveira. Then, we exploit the properties of our model to enable the modular construction of new semantics for aspect scoping and weaving. Our second contribution builds upon a powerful model to reason about mixin-based composition of effectful components and their interference, based on equational reasoning, parametricity, and algebraic laws about monadic effects. Our contribution is to show how to reason about interference in the presence of unrestricted quantification through pointcuts. We show that global reasoning can be compositional, which is key for the scalability of the approach in the face of large and evolving systems. We prove a general equivalence theorem that is based on a few conditions that can be established, reused, and adapted separately as the system evolves. The theorem is defined for an abstract monadic AOP model; we illustrate its use with a simple version of the model just described. This work brings type-based reasoning about effects for the first time in the pointcut/advice model, in a framework that is expressive, extensible and well-suited for development of robust aspect-oriented systems as well as a research tool for new aspect semantics.
379

Modular languages for systems and synthetic biology

Pedersen, Michael January 2010 (has links)
Systems biology is a rapidly growing field which seeks a refined quantitative understanding of organisms, particularly studying how molecular species such as metabolites, proteins and genes interact in cells to form the complex emerging behaviour exhibited by living systems. Synthetic biology is a related and emerging field which seeks to engineer new organisms for practical purposes. Both fields can benefit from formal languages for modelling, simulation and analysis. In systems biology there is however a trade-off in the landscape of existing formal languages: some are modular but may be difficult for some biologists to understand (e.g. process calculi) while others are more intuitive but monolithic (e.g. rule-based languages). The first major contribution of this thesis is to bridge this gap with a Language for Biochemical Systems (LBS). LBS is based on the modular Calculus of Biochemical Systems and adds e.g. parameterised modules with subtyping and a notion of nondeterminism for handling combinatorial explosion. LBS can also incorporate other rule-based languages such as Kappa, hence adding modularity to these. Modularity is important for a rational structuring of models but can also be exploited in analysis as is shown for the specific case of Petri net flows. On the synthetic biology side, none of the few existing dedicated languages allow for a high-level description of designs that can be automatically translated into DNA sequences for implementation in living cells. The second major contribution of this thesis is exactly such a language for Genetic Engineering of Cells (GEC). GEC exploits the recent advent of standard genetic parts (“biobricks”) and allows for the composition of such parts into genes in a modular and abstract manner using logical constraints. GEC programs can then be translated to DNA sequences using a constraint satisfaction engine based on a given database of genetic parts.
380

When shape becomes a sign: narrative design in creative nonfiction.

Hale, Bonnie 05 1900 (has links)
This thesis consists of a preface and three original short stories. The preface explores the idea that narrative designthe shape or structureof a story may become a literary motif in its own right. The three stories included are creative nonfiction and each employs a distinct modular design. The themes of the stories revolve around personal identity and values; families and marriage; and creative empowerment.

Page generated in 0.1061 seconds