• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 45
  • 19
  • 17
  • 17
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Investigating Impact of Emerging Medium-Voltage SiC MOSFETs on Medium-Voltage High-Power Applications

Marzoughi, Alinaghi 16 January 2018 (has links)
For decades, the Silicon-based semiconductors have been the solution for power electronics applications. However, these semiconductors have approached their limits of operation in blocking voltage, working temperature and switching frequency. Due to material superiority, the relatively-new wide-bandgap semiconductors such as Silicon-Carbide (SiC) MOSFETs enable higher voltages, switching frequencies and operating temperatures when compared to Silicon technology, resulting in improved converter specifications. The current study tries to investigate the impact of emerging medium-voltage SiC MOSFETs on industrial motor drive application, where over a quarter of the total electricity in the world is being consumed. Firstly, non-commercial SiC MOSFETs at 3.3 kV and 400 A rating are characterized to enable converter design and simulation based on them. In order to feature the best performance out of the devices under test, an intelligent high-performance gate driver is designed embedding required functionalities and protections. Secondly, total of three converters are targeted for industrial motor drive application at medium-voltage and high-power range. For this purpose the cascaded H-bridge, the modular multilevel converter and the 5-L active neutral point clamped converters are designed at 4.16-, 6.9- and 13.8 kV voltage ratings and 3- and 5 MVA power ratings. Selection of different voltage and power levels is done to elucidate variation of different parameters within the converters versus operating point. Later, comparisons are done between the surveyed topologies designed at different operating points based on Si IGBTs and SiC MOSFETs. The comparison includes different aspects such as efficiency, power density, semiconductor utilization, energy stored in converter structure, fault containment, low-speed operation capability and parts count (for a measure of reliability). Having the comparisons done based on simulation data, an H-bridge cell is implemented using 3.3 kV 400 A SiC MOSFETs to evaluate validity of the conducted simulations. Finally, a novel method is proposed for series-connecting individual SiC MOSFETs to reach higher voltage devices. Considering the fact that currently the SiC MOSFETs are not commercially available at voltages higher above 1.7 kV, this will enable implementation of converters using medium-voltage SiC MOSFETs that are achieved by stacking commercially-available 1.7 kV MOSFETs. The proposed method is specifically developed for SiC MOSFETs with high dv/dt rates, while majority of the existing solutions could only work merely with slow Si-based semiconductors. / Ph. D.
32

Power Electronics Design Methodologies with Parametric and Model-Form Uncertainty Quantification

Rashidi Mehrabadi, Niloofar 27 April 2018 (has links)
Modeling and simulation have become fully ingrained into the set of design and development tools that are broadly used in the field of power electronics. To state simply, they represent the fastest and safest way to study a circuit or system, thus aiding in the research, design, diagnosis, and debugging phases of power converter development. Advances in computing technologies have also enabled the ability to conduct reliability and production yield analyses to ensure that the system performance can meet given requirements despite the presence of inevitable manufacturing variability and variations in the operating conditions. However, the trustworthiness of all the model-based design techniques depends entirely on the accuracy of the simulation models used, which, thus far, has not yet been fully considered. Prior to this research, heuristic safety factors were used to compensate for deviation of real system performance from the predictions made using modeling and simulation. This approach resulted invariably in a more conservative design process. In this research, a modeling and design approach with parametric and model-form uncertainty quantification is formulated to bridge the modeling and simulation accuracy and reliance gaps that have hindered the full exploitation of model-based design techniques. Prior to this research, a few design approaches were developed to account for variability in the design process; these approaches have not shown the capability to be applicable to complex systems. This research, however, demonstrates that the implementation of the proposed modeling approach is able to handle complex power converters and systems. A systematic study for developing a simplified test bed for uncertainty quantification analysis is introduced accordingly. For illustrative purposes, the proposed modeling approach is applied to the switching model of a modular multilevel converter to improve the existing modeling practice and validate the model used in the design of this large-scale power converter. The proposed modeling and design methodology is also extended to design optimization, where a robust multi-objective design and optimization approach with parametric and model form uncertainty quantification is proposed. A sensitivity index is defined accordingly as a quantitative measure of system design robustness, with regards to manufacturing variability and modeling inaccuracies in the design of systems with multiple performance functions. The optimum design solution is realized by exploring the Pareto Front of the enhanced performance space, where the model-form error associated with each design is used to modify the estimated performance measures. The parametric sensitivity of each design point is also considered to discern between cases and help identify the most parametrically-robust of the Pareto-optimal design solutions. To demonstrate the benefits of incorporating uncertainty quantification analysis into the design optimization from a more practical standpoint, a Vienna-type rectifier is used as a case study to compare the theoretical analysis with a comprehensive experimental validation. This research shows that the model-form error and sensitivity of each design point can potentially change the performance space and the resultant Pareto Front. As a result, ignoring these main sources of uncertainty in the design will result in incorrect decision-making and the choice of a design that is not an optimum design solution in practice. / Ph. D.
33

Contrôle et modélisation du convertisseur multi-modulaire AC-AC pour les liaisons offshore à haute tension et basse fréquence / Modelling and Control of AC-AC Modular Multilevel Converter for High Voltage and Low Frequency Offshore Application

Dasco, Antony 19 October 2017 (has links)
L’objectif principal de cette thèse consiste à développer des stratégies de modélisation et de contrôle pour la conversion de fréquence en utilisant un convertisseur multi-modulaire sans utilisation de lien en continu. Ce convertisseur est nécessaire pour l’intégration des énergies renouvelables offshore dans un réseau de transport à basse fréquence. La basse fréquence électrique profite à la fois des avantages des réseaux alternatif et continu. L’utilisation de convertisseurs modulaires dans ces réseaux permet, entre autres, de supprimer le transformateur du côté de la basse fréquence électrique. Dans cette optique, l’énergie est convertie depuis la fréquence nominale à 50 Hz ou 60 Hz (considérée comme la haute fréquence) vers un tiers de 50 Hz. Le convertisseur est aussi capable de transformer d’autres valeurs de fréquence. Dans un premier temps, la méthode de modélisation du convertisseur est reliée à la théorie du transformateur de voltage triphasé avec un couplage en YDY. En deuxième lieu, l’application du théorème de superposition nous permet d’évaluer séparément la contribution de chaque fréquence. Dans un dernier temps, le contrôle principal du convertisseur utilise des correcteurs résonants, capables donc de travailler directement avec les courants internes du convertisseur qui sont à deux fréquences nominales. Grâce au découplage entre l’entrée du convertisseur et sa sortie, les défauts et les situations de déséquilibre ne se propagent pas vers la sortie du convertisseur, fonctionnement requis pour l’application en offshore. / The purpose of this thesis is to develop strategies to model and control a modular multilevel converter in order to transform frequency without passing through a direct current link. This converter is needed for application in offshore systems where the energy, produced by the offshore renewables, is transmitted using low frequency links. Low frequency presents benefits from alternative and direct current technologies. Moreover, a voltage transformer is not required at the low frequency side when the proposed converter is used as a frequency transformer. In this scenario, frequencies are converted from the highest nominal frequency (50 Hz or 60 Hz) to one third of 50 Hz. Conversion to other frequency values has been tested as well using the same converter. A methodology based on the electrical transformer theory when connected in YΔY coupling and, the superposition theorem to separate the contribution from both frequencies, are proposed to link these currents with the two three-phase systems at different nominal frequencies. Resonant controllers are introduced to efficiently correct internal current signals of the converter that nominally are constituted of two frequencies: input and output frequencies. The converter is able to decouple the input side from the output. Therefore, faults and unbalanced conditions on the input side are not propagated to the output-side of the converter, which is required for offshore applications.
34

Stratégie de protection de réseaux de transport d’électricité en courant continu multi-terminaux à l’aide de disjoncteurs mécaniques DC / Protection strategy for multi-terminal High Voltage Direct Current grids based on mechanical DC circuit breakers

Loume, Dieynaba 03 October 2017 (has links)
Les réseaux de transport d’électricité multi-terminaux à courant continu se révèlent être la solution adéquate pour une intégration massive d’énergie renouvelable dans les réseaux alternatifs existants. En effet, les réseaux en courant continu sont capables de transmettre de manière efficace des niveaux de puissance élevés sur de très longues distances par rapport aux réseaux alternatifs car, à partir d'une certaine puissance à transmettre, il existe une distance limite à partir de laquelle la transmission d’énergie en courant alternatif perd sa compétitivité face à la transmission en courant continu. L'un des principaux défis liés au développement de ces réseaux de transport d’électricité à courant continu ou Supergrid, concerne leur protection contre des défauts de type court-circuit sur des liaisons en courant continu. . Dans ce travail de thèse, un nouveau concept de stratégie de protection des réseaux en courant continu à haute tension en cas de défaut court-circuit est proposé. La stratégie repose sur une philosophie de protection ayant comme priorité la suppression du courant de défaut avant l’isolation de la liaison en défaut. Elle est basée sur l’utilisation de disjoncteurs mécaniques à courant continu sans avoir recours à des limiteurs de courant de défaut. Une séquence de protection primaire ainsi que deux séquences de sauvegarde en cas de défaillance de disjoncteurs ont été développées, testées et validées à l’aide de simulations de transitoires électromagnétiques et de simulations temps-réel. En outre, les algorithmes des relais de protection ont été implémentés avec l'aide de l’outil d’analyse fonctionnelle descendante SADT (Structured Analysis and Design System). Cette thèse a été effectuée dans le cadre du SuperGrid Institute, une plate-forme de recherche collaborative visant à développer des technologies pour les futurs réseaux de transport d'électricité et regroupant l'expertise d'industries telles que GE Grid Solutions et les laboratoires de recherche publique comme le laboratoire de génie électrique de Grenoble (G2Elab). / Multi-terminal High Voltage Direct Current (MTDC) grids,have been proven to be an adequate solution for massive integration of renewable energy power to existing High Voltage Alternating Current (HVAC) grids. Indeed, HVDC grids are capable of transmitting efficiently high level of power over very long distances compared to HVAC grids since, from a certain power to be transmitted, there is a limited distance from which the AC power transmission loses its efficiency and becomes very costly compared to DC power transmission. One of the main challenges related to the development of theses multi-terminal HVDC grids, or Supergrids, concerns their protection against DC short-circuit faults. In this thesis, a new concept of protection strategy for MTDC grids in case of permanent short-circuit fault on a DC cable has been proposed. The strategy is based on the non-selective fault clearing philosophy where the priority is given to the suppression of the fault current before isolating the faulty transmission line. The strategy is based on mechanical DC breakers and no fault current limiting devices are used. A primary protection sequence as well as two back-up sequences in case of breakers operation failure have been developed, tested and validated through Electromagnetic Transient (EMT) and Real-Time (RT) simulations. Also, algorithms to be implemented on protective relays have been designed with the help of the Structured Analysis and Design System (SADT). This PhD thesis has been performed in the frame of the SuperGrid Institute, a collaborative research platform aiming to develop technologies for the future electricity transmission network and bringing together the expertise of industries such as GE grid solutions and public research laboratories as the Grenoble Electrical Engineering Laboratory (G2Elab).
35

Estudo do conversor modular multinível / Modular multilevel converter study

Cúnico, Lucas Mondardo 15 February 2013 (has links)
Made available in DSpace on 2016-12-12T17:38:32Z (GMT). No. of bitstreams: 1 Lucas M Cunico.pdf: 25684121 bytes, checksum: ea9738a6141379467e611c829e42ebe0 (MD5) Previous issue date: 2013-02-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The modular multilevel converter emerged as a new topology of multilevel converters, being introduced in 2002. The advantages of this topology are related to its modularity and scalability. This work presents the study and implementation of this converter, which includes the presentation of the main methods of modulation and voltage balancing of the foating capacitors and startup. The used modulation in modeled using switching functions, its allow one minimize the current ripple at system inductor due the correct selection of carriers shift angles. Moreover a current control and voltages equalization methodology are proposed. It is performed dynamic modeling and quantitative analysis of the converter and it is derived a design methodology. This methodology is used to design and build a 3 kVA prototype with bus voltage of 800 V. The results include transient analyses, efficiency, voltage charging and steady state. / O conversor modular multinível emergiu como uma nova topologia de conversores mutiníveis, sendo introduzido a partir de 2002. As vantagens desta topologia estão relacionadas a sua modularidade e escalabilidade. Este trabalho apresenta o estudo e implementação deste conversor, o que inclui a apresentação das principais metodologias de modulação e equilíbrio da tensão e pre-carga dos capacitores flutuantes. Apresenta-se um estudo da modulação por meio de funções de chaveamento que permite a minimização da ondulação de corrente nos indutores por meio da escolha adequada dos ângulos de defasagem das portadoras empregadas. Para que o projeto da estrutura seja possível, e realizada a modelagem dinâmica e a analise quantitativa do conversor em diferentes condições de operação, sendo derivada uma metodologia de projeto. Esta metodologia de posta a prova com a construção de um protótipo de 3 kVA com tensão de barramento de 800 V. Os resultados obtidos do protótipo incluem avaliações transitórias, verificação do rendimento, pre-carga e operação em regime.
36

Analyse de stabilité en petit signaux des Convertisseurs Modulaires Multiniveaux et application à l’étude d'interopérabilité des MMC dans les Réseaux HVDC / Small- signal stability analysis of Modular Multilevel Converters and application to MMC –based Multi-Terminal DC grids

Freytes, Julian 07 December 2017 (has links)
Ces travaux de thèse portent essentiellement sur la modélisation, l’analyse et la commande des convertisseurs de type MMC intégrés dans un contexte MTDC. Le premier objectif de ce travail est d’aboutir à un modèle dynamique du convertisseur MMC, exprimé dans le repère $dq$, permettant d’une part, de reproduire avec précision les interactions AC-DC, et d’exprimer, d’autre part, la dynamique interne du convertisseur qui peut interagir également avec le reste du système. Le modèle développé peut être linéarisé facilement dans le but de l’exploiter pour l’étude de stabilité en se basant sur les techniques pour les systèmes linéaires à temps invariant. Ensuite, selon le modèle développé dans le repère dq, différentes stratégies de contrôle sont proposées en fonction de systèmes de contrôle-commande existantes dans la littérature mis en places pour le convertisseur MMC. Étant donné que l’ordre du système est un paramètre important pour l'étude des réseaux MTDC en présence de plusieurs stations de conversion de type MMC, l’approche de réduction de modèles à émerger comme une solution pour faciliter l’étude. En conséquence, différents modèles à ordre réduit sont développés, et qui sont validés par la suite, par rapport au modèle détaillé, exprimé dans le repère dq. Finalement, les modèles MMC développés ainsi que les systèmes de commande qui y ont associés sont exploités, pour l’analyse de stabilité en petits signaux des réseaux MMC-MTDC. Dans ce sens, la stratégie de commande associée à chaque MMC est largement évaluée dans le but d’investiguer les problèmes majeurs qui peuvent surgir au sein d’une configuration MTDC multi-constructeurs / This thesis deals with the modeling and control of MMCs in the context of MTDC. The first objective is to obtain an MMC model in dq frame which can reproduce accurately the AC- and DC- interactions, while representing at the same time the internal dynamics which may interact with the rest of the system. This model is suitable to be linearized and to study its stability, among other linear techniques. Then, based on the developed dq model, different control strategies are developed based on the state-of-the-art on MMC controllers. Since the order of the system may be a limiting factor for studying MTDC grids with many MMCs, different reduced-order models are presented and compared with the detailed dq model. Finally, the developed MMC models with different controllers are used for the MTDC studies. The impact of the chosen controllers of each MMC is evaluated, highlighting the potential issues that may occur in multivendor schemes.
37

Conversor modular multinível aplicado a sistema híbrido de armazenamento de energia

Pinto, Jonathan Hunder Dutra Gherard 19 February 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-03-27T13:46:07Z No. of bitstreams: 1 jonathanhunderdutragherardpinto.pdf: 6016290 bytes, checksum: 50eab93d008d20c4a60c851574b2c6f3 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-03-27T13:57:34Z (GMT) No. of bitstreams: 1 jonathanhunderdutragherardpinto.pdf: 6016290 bytes, checksum: 50eab93d008d20c4a60c851574b2c6f3 (MD5) / Made available in DSpace on 2018-03-27T13:57:34Z (GMT). No. of bitstreams: 1 jonathanhunderdutragherardpinto.pdf: 6016290 bytes, checksum: 50eab93d008d20c4a60c851574b2c6f3 (MD5) Previous issue date: 2018-02-19 / Este trabalho tem como contribuição o desenvolvimento de uma estratégia de equa-lização das tensões em um conversor multinível modular, como parte integrante de um sistema híbrido de armazenamento de energia. O conversor modular multinível realiza a conexão em série de módulos supercapacitores, o que possibilita aumentar a ten-são sem prejudicar a transferência rápida de energia. Em relação à outras topologias, este trabalho permite reduzir a quantidade, volume e massa do elemento magnético da estrutura do conversor. Um banco de baterias de íons de lítio também integra o sistema por intermédio de um conversor estático. Como é a fonte de maior densidade de energia, fornece a potência média requerida pelo carga. A associação com uma fonte de transferência rápida de energia permite aumentar o desempenho dinâmico, a eficiência energética e a vida útil da bateria. Com efeito, tem-se um sistema híbrido de armazenamento de energia que requer estratégias de gestão para múltiplas fontes de suprimento. Os resultados simulados considerando a estimativa da demanda de po-tência de um protótipo de veículo elétrico, são adequados e propiciam os fundamentos necessários para a construção de um protótipo. / This work is a contribution to develop a strategy equalization of tensions in a mo-dular multilevel converter as part of a hybrid system energy storage. The multilevel modular converter realizes the series connection of supercapacitor modules, which al-lows to increase the voltage without cause damages to the quick energy transfer. In relation to other topologies, it allows reduction of the quantity, volume and mass of the magnetic element of the converter structure. A lithium-ion battery bank also integrates the system via a voltage boost converter. This battery is the source of high energy density, which provides the average power required by the load. The association with a fast transfer power source allows for increased dynamic performance, energy efficiency and service life. In fact, there is a hybrid energy storage system that requires mana-gement strategies for multiple sources of supply. The simulated results were obtained considering the power demand estimation of an electric vehicle prototype.
38

Experimental Comparison of Losses in a Grid-connected and M2C-fed 11kW Induction Motor / Experimentell jämförelse av förluster i en nät- och M2C matad 11kw asynkronmotor

MÖRÉE, GUSTAV January 2015 (has links)
This thesis analyzes the power losses in induction machines and how the losses depend on the harmonic content of the applied voltages. Two cases are compared, one case where a machine is fed with a sinusoidial voltage and one case with a modular multilevel converter (M2C). The sine is representing an ideal grid while the M2C represents a case with harmonic content. The usage of converters for electrical drive systems is increasing due to advantages when the rotor speed could be variable by changing the frequency of the voltage. This is usually increasing the efficiency of the overall system, but is also adding harmonics fed to the machine and switching losses in the converter. Low switching losses in the inverter usually create higher harmonic content that instead increases the losses of the machine. The M2C is then proposed as a converter topology that can keep the harmonic content low while keeping the switching losses relatively low. This study focuses on the iron losses, the part of the total losses that is most hard to predict or measure. Today’s methods used to calculate the iron losses are often rough approximations that do not take the impact of the harmonic content of voltage into consideration, even though the iron losses are dependent on the harmonics. Experimental results in the study show that the losses of a M2C-fed case do not differ much from a sine-fed case. The difference could be explained by low increase of iron losses caused by the small harmonic content from the M2C. The increase of iron losses was linked to the harmonic content of the voltage. / Detta examensarbete analyserar effektförluster i induktionsmaskiner och hur förlusterna beror på övertonsinnehållet i den matande spänningen. Två fall kommer att jämföras, ett fall där en maskin är matad från en sinus spänning och ett fall med en modulär multinivå omvandlare (M2C). Sinusen representerar ett idealt nät medan M2C representerar ett fall med övertonsinnehåll. Användning av omvandlare för elekriska drivsystem ökar på grund av fördelarna när rotorhastighet kan varieras genom att ändra frekvensen från den matande växelriktaren. Detta ökar vanligtvis verkningsgraden på det sammanlagda systemet, men detta bidrar även med övertonsinnehåll matat till maskinen och switchförluster i omvandlaren. Låga switchförluster i omvandlaren medför oftast ett högt övertonsinnehåll som istället ökar förlusterna i maskinen. M2C är därför föreslaget som en teknik som håller övertonsinnehållet lågt medan switchförlusterna är relativt låga. Denna studie fokuserar på järnförluster, den del av de totala förlusterna som är som svårast att förutse eller mäta. De metoder som finns för att beräkna järnförlusterna är vanligtvis grova skattningar som inte tar hänsyn till inverkan från spänningens övertoninnehåll, även om järnförluster beror på övertonerna i stor utsträckning. Experimentella resultat i studien visar att förlusterna i ett M2C-matat fall inte avviker i stor utsträkning jämte ett sinusmatat fall. Skillnanen kan förklaras utifrån den lilla ökningen av järnförluster från det låga övertonsinnehållet från M2C:n. Järnförlusterna ses vara kopplade till övertonsinnehållet i spänningen.
39

Beiträge zur Modulation, Modellbildung und Energieregelung von modularen Mehrpunktstromrichtern (M2C)

Fehr, Hendrik 23 October 2020 (has links)
Gegenstand der Arbeit sind die Modulation, die Modellbildung und die Energiesymmetrierung von modularen Mehrpunktstromrichtern sowie der Aufbau einer Niederspannungs-Modellanlage zum Test von Regelungsverfahren. Die entwickelten Modulationsalgorithmen zeichnen sich durch niedrige Schaltfrequenz, geringe Spannungsunsymmetrie der Submodulspannungen, schnelle Berechnung und verbesserte eingeprägte Spannungen aus -- dank einer dynamisch bevorzugten versetzten Taktung. Zur Klassifizierung von Modulationsverfahren wird hier die Unterscheidung von später und früher Submodulauswahl vorgeschlagen. Der vertiefend betrachtete Fall niedriger Submodulzahlen (n<20) erfordert Verfahren mit früher Submodulauswahl, von diesen werden im weiteren fünf Algorithmen entwickelt, implementiert und experimentell erprobt. Eines der entwickelten Modulationsverfahren nutzt den Freiheitsgrad, der durch Aufteilung der Schaltflanken auf zwei Submodule entsteht, zur Verbesserung der eingeprägten Spannung. Die dabei durchgeführte Analyse unsymmetrischer Submodulspannungen erlaubt die sichere Ausnutzung dieses Freiheitsgrads im gesamten Betriebsbereich auch für andere Modulationsverfahren. Ein bei der Modellbildung der Zweigenergien neu eingenommener Standpunkt führt auf ein Stromrichtermodell, in welchem der Laststrom die Rolle eines zeitabhängigen Parameters annimmt. Das gestattet die getrennte Betrachtung von Stromrichter und Last, was sich vor allem bei der späteren (algebraischen) Parametrierung der Systemgrößen für die planungsbasierte Energieregelung auszahlt. Das Symmetrierungsproblem der Energieregelung wird mit Hilfe des zuvor hergeleiteten Energiemodells aufgegriffen. Im Unterschied zu bekannten Verfahren werden die Fehlerverstärkungen der Energiefehler-Rückführung unter Berücksichtigung der Kopplungen eingestellt, welche durch gemeinsame Nutzung des Kreisstroms entstehen, was die 10-Prozent-Abklingzeit der Energiefehler um 67 Prozent verringert. Für den Fall ohne Aussteuerung der Gleichtaktspannung konnte außerdem die zeitvariante Fehlerdynamik der Energiefehler-Rückführung in eine zeitinvariante Darstellung transformiert werden und erlaubt damit erstmals globale Stabilitätsaussagen und eine effiziente Optimierung der Polkonstellation. Eine neuartige planungsbasierte Energieregelung verbessert die Symmetrierung mit Hilfe einer Vorsteuerung, die schon während der Überführungen zu neuen Arbeitsregimes eine Verringerung der Kondensatorspannungsschwankungen erreicht. Der Aufwand der Steuerungsberechnung konnte deutlich reduziert werden, und zwar zum einen durch Aufnahme der vertikalen Energiedifferenz in die vorgegebenen Energien, und zum anderen durch die Konstruktion von Überführungen, deren Parameter vorteilhaft voneinander unabhängige Rollen einnehmen. Bei dieser Aufgabe erlaubt das hergeleitete Stromrichtermodell die bequeme Vorgabe von vier der sechs Stromrichterenergien, sodass nur zwei durch Integration bestimmt werden brauchen, was der bisher niedrigsten bekannten Ordnung für dieses Problem entspricht. Die entwickelte Steuerung reduziert die Kondensatorspannungsschwankungen und entlastet die Energiefehler-Rückführung von der Überführungsaufgabe, wie die für die Messung durchgeführte Implementierung zeigt. Ein Parametervergleich der aufgebauten Modellanlage mit typischen Mittelspannungs-M2Cs belegt die besonders gute Nachbildung der für die Energieregelung relevanten Verhältnisse im Vergleich zu anderen Modellanlagen.:I Untersuchungen zum M2C 1 Einleitung 2 Modulationsverfahren 2.1 Einleitung 2.2 Modulationsverfahren der Modellanlage 2.2.1 Eigenschaften der Modulation der Modellanlage 2.2.2 Algorithmus 1 2.2.3 Algorithmus 2 2.2.4 Algorithmus 3 2.2.5 Algorithmus 4 2.2.6 Besonderheiten bei Modulation mit zwei taktenden Modulen 2.2.7 Algorithmus 5 2.3 Vergleich der Algorithmen 2.3.1 Schaltfrequenz 2.3.2 Symmetrierung 2.3.3 Eingeprägte Spannung 2.3.4 Spektrum der Gleich- und Wechselspannung 2.3.5 Rechenzeit 2.4 Zusammenfassung 3 Modellbildung 3.1 Modellierung der Submodule und deren Reihenschaltung 3.2 Simulationsmodell zur Berücksichtigung eines unsymmetrischen Aufbaus 3.3 Modellbildung für den Regelungsentwurf 3.3.1 Anwendung von Ersatzsubmodulen für den Regelungsentwurf 3.3.2 Überblick zum weiteren Vorgehen 3.3.3 Vereinfachungen bei symmetrischem Aufbau 3.3.4 Dreiphasige und einphasige Betrachtung mittels Stromquellenlast 3.3.5 Transformation in Summe und Differenzen 3.3.6 Transformation in Energien 3.3.7 Energiegrößen für die dreiphasige Schaltung 3.4 Stationäre Lösungen der dreiphasigen Schaltung 3.4.1 Kreisstromfreier Betrieb ohne Gleichtaktspannung 3.4.2 Kreisstromfreier Betrieb mit triplen harmonic injection 3.4.3 Betrieb mit zweiter Harmonischer im Kreisstrom 3.4.4 Betrieb ohne Auslenkung der komplexen Summenenergie 3.4.5 Vergleich zweier Kreisstromformen zur Reduktion der Spannungsschwankung 3.5 Zusammenfassung der Eigenschaften des Modells und der Herleitung 4 Beiträge zur Regelung eines M2Cs 4.1 Überblick über Symmetrierungslösungen 4.2 Rückführung der Energiefehler auf den Kreisstrom 4.2.1 Fehlerdynamik 4.2.2 Einstellung der Fehlerverstärkungen bei vernachlässigter Kopplung 4.2.3 Simulation der Fehlerdynamik und des gesamten Stromrichters 4.2.4 Einstellung der Fehlerverstärkungen anhand von Eigenwerten 4.2.5 Einstellung der Fehlerverstärkungen bei Aussteuerung der Gleichtaktspannung 4.2.6 Anpassung der Einstellungen an veränderte Parameter 4.2.7 Zusammenfassung der untersuchten Einstellungen 4.3 Planungsbasierte Optimierung der Symmetrierung 4.3.1 Grundidee 4.3.2 Berechnung der Systemgrößen 4.3.3 Trajektorienplanung für die Last 4.3.4 Trajektorienplanung für den M2C 4.3.5 Berechnung des verbleibenden Parameters 4.3.6 Verbesserung des Verlaufs der Gleichtaktspannung 4.3.7 Messergebnisse 4.3.8 Zusammenfassung 5 Zusammenfassung des ersten Teils II Modellanlage mit M2C 6 Eigenschaften der Modellanlage 6.1 Besonderheiten beim Test von Regelungsverfahren 6.2 Schutzfunktionen 6.3 Dimensionierung der Komponenten 6.3.1 Berechnung des Energiehubs der Kondensatoren 6.3.2 Einfluss der Induktivität der Zweigdrossel 6.3.3 Dimensionierung der Zweigdrossel 6.3.4 Abschätzung und Simulation der ohmschen Verluste und der Halbleiterverluste 6.3.5 Verluste der Submodulkondensatoren 6.3.6 Entwärmung der Leistungshalbleiter 6.3.7 Berechnung der mindestens notwendigen Gleichspannung 6.3.8 Berechnung der maximal bereitzustellenden Zweigspannung 6.4 Vergleich von Modellanlagen mit Mittelspannungs-M2Cs 7 Zusammenfassung des zweiten Teils / The thesis deals with the modulation, the modeling and the energy balancing of modular multilevel converters as well as the construction of a low-voltage test bench for the experimental evaluation. The proposed modulation algorithms offer low switching frequency, small cell voltage imbalance, fast calculation, and improved injected voltages thanks to the idea of inherited polarity. In order to classify modular multilevel converter modulation schemes a distinction between early and late cell selection is proposed. The further investigation focuses on modulation for a small number of cells per arm (n<20) for which early selection is advantageous. Five such methods are developed, implemented and tested experimentally on a test bench. The injected voltage was improved by exploiting a degree of freedom that arises when the positive and negative edges are assigned to two cells instead of one cell. A corresponding analysis of the inherent deviations between the cell voltages enables reliable exploitation of the degree of freedom without endangering correct termination of the algorithm. The proposed arm energy modeling results in a converter model that incorporates the load current as time varying parameter and enables a beneficial separation of converter model and load model that eases trajectory planning for both. The energy balancing problem of modular multilevel converters is tackled by means of the derived arm energy model. In comparison to known approaches, the tuning scheme takes into account the coupling caused by the different circulating current frequency components and reduces the 10 percent decay-time by 67 percent. In case of zero common mode voltage a transformation of the time-variant error dynamics of the energy balancing feedback into a time-invariant form enables global stability proof and efficient eigenvalue optimization. A novel energy balancing approach based on trajectory planning and feed-forward circulating current enables a balanced operation even during transfers between operating regimes. In contrast to the classic approach of specifying circulating current components and common-mode voltage, four out of six (transformed) arm energies are specified in order to identify balanced transfers between operating regimes. The calculation cost for obtaining consistent energy references has been reduced by specifying candidate trajectories even for the vertical difference energy, and by using candidate trajectories whose parameters are responsible for independent tasks. Thus, only two energies remain that need to be determined via integration during the planning procedure. This is the lowest known order of the system to be integrated. As a benefit of this approach, no balancing error remains, i.e. the task of the balancing feedback is reduced to compensating parameter uncertainties and disturbances. The proposed energy references improve the cell voltage balance and relieves the feedback based energy balancing from the large signal transfer task. The LC-circuit of the cell capacitors and the arm inductor of the low-voltage test bench features a similar resonant frequency as reported for typical medium-voltage designs as a survey of other low-voltage test benches reveal.:I Untersuchungen zum M2C 1 Einleitung 2 Modulationsverfahren 2.1 Einleitung 2.2 Modulationsverfahren der Modellanlage 2.2.1 Eigenschaften der Modulation der Modellanlage 2.2.2 Algorithmus 1 2.2.3 Algorithmus 2 2.2.4 Algorithmus 3 2.2.5 Algorithmus 4 2.2.6 Besonderheiten bei Modulation mit zwei taktenden Modulen 2.2.7 Algorithmus 5 2.3 Vergleich der Algorithmen 2.3.1 Schaltfrequenz 2.3.2 Symmetrierung 2.3.3 Eingeprägte Spannung 2.3.4 Spektrum der Gleich- und Wechselspannung 2.3.5 Rechenzeit 2.4 Zusammenfassung 3 Modellbildung 3.1 Modellierung der Submodule und deren Reihenschaltung 3.2 Simulationsmodell zur Berücksichtigung eines unsymmetrischen Aufbaus 3.3 Modellbildung für den Regelungsentwurf 3.3.1 Anwendung von Ersatzsubmodulen für den Regelungsentwurf 3.3.2 Überblick zum weiteren Vorgehen 3.3.3 Vereinfachungen bei symmetrischem Aufbau 3.3.4 Dreiphasige und einphasige Betrachtung mittels Stromquellenlast 3.3.5 Transformation in Summe und Differenzen 3.3.6 Transformation in Energien 3.3.7 Energiegrößen für die dreiphasige Schaltung 3.4 Stationäre Lösungen der dreiphasigen Schaltung 3.4.1 Kreisstromfreier Betrieb ohne Gleichtaktspannung 3.4.2 Kreisstromfreier Betrieb mit triplen harmonic injection 3.4.3 Betrieb mit zweiter Harmonischer im Kreisstrom 3.4.4 Betrieb ohne Auslenkung der komplexen Summenenergie 3.4.5 Vergleich zweier Kreisstromformen zur Reduktion der Spannungsschwankung 3.5 Zusammenfassung der Eigenschaften des Modells und der Herleitung 4 Beiträge zur Regelung eines M2Cs 4.1 Überblick über Symmetrierungslösungen 4.2 Rückführung der Energiefehler auf den Kreisstrom 4.2.1 Fehlerdynamik 4.2.2 Einstellung der Fehlerverstärkungen bei vernachlässigter Kopplung 4.2.3 Simulation der Fehlerdynamik und des gesamten Stromrichters 4.2.4 Einstellung der Fehlerverstärkungen anhand von Eigenwerten 4.2.5 Einstellung der Fehlerverstärkungen bei Aussteuerung der Gleichtaktspannung 4.2.6 Anpassung der Einstellungen an veränderte Parameter 4.2.7 Zusammenfassung der untersuchten Einstellungen 4.3 Planungsbasierte Optimierung der Symmetrierung 4.3.1 Grundidee 4.3.2 Berechnung der Systemgrößen 4.3.3 Trajektorienplanung für die Last 4.3.4 Trajektorienplanung für den M2C 4.3.5 Berechnung des verbleibenden Parameters 4.3.6 Verbesserung des Verlaufs der Gleichtaktspannung 4.3.7 Messergebnisse 4.3.8 Zusammenfassung 5 Zusammenfassung des ersten Teils II Modellanlage mit M2C 6 Eigenschaften der Modellanlage 6.1 Besonderheiten beim Test von Regelungsverfahren 6.2 Schutzfunktionen 6.3 Dimensionierung der Komponenten 6.3.1 Berechnung des Energiehubs der Kondensatoren 6.3.2 Einfluss der Induktivität der Zweigdrossel 6.3.3 Dimensionierung der Zweigdrossel 6.3.4 Abschätzung und Simulation der ohmschen Verluste und der Halbleiterverluste 6.3.5 Verluste der Submodulkondensatoren 6.3.6 Entwärmung der Leistungshalbleiter 6.3.7 Berechnung der mindestens notwendigen Gleichspannung 6.3.8 Berechnung der maximal bereitzustellenden Zweigspannung 6.4 Vergleich von Modellanlagen mit Mittelspannungs-M2Cs 7 Zusammenfassung des zweiten Teils
40

Modeling, Control and Design Considerations for Modular Multilevel Converters

Najmi, Vahid 25 June 2015 (has links)
This thesis provides insight into state-of-the-art Modular Multilevel Converters (MMC) for medium and high voltage applications. Modular Multilevel Converters have increased in interest in many industrial applications, as they offer the following advantages: modularity, scalability, reliability, distributed location of capacitors, etc. In this study, the modeling, control and design considerations of modular based multilevel converters, with an emphasis on the reliability of the converter, is carried out. Both modular multilevel converters with half-bridge and full-bridge sub-modules are evaluated in order to provide a complete analysis of the converter. From among the family of modular based hybrid multilevel converters, the newly released Alternate Arm Converter (AAC) is considered for further assessment in this study. Thus, the modular multilevel converter with half-bridge and full-bridge power cells and the Alternate Arm Converter as a commercialized hybrid structure of this family are the main areas of study in this thesis. Finally, the DC fault analysis as one of the main issues related to conventional VSC converters is assessed for Modular Multilevel Converters (MMC) and the DC fault ride-through capability and DC fault current blocking ability is illustrated in both the Modular Multilevel Converter with Full-Bridge (FB) power cells and in the Alternate Arm Converter (AAC). Accordingly, the DC fault control scheme employed in the converter and the operation of the converter under the fault control scheme are explained. The main contributions of this study are as follows: The new D-Q model for the MMC is proposed for use in the design of the inner and outer loop control. The extended control scheme from the modular multilevel converter is employed to control the Alternate Arm Converters. A practical reliability-oriented sub-module capacitor bank design is described based on different reliability modeling tools. A Zero Current Switching (ZCS) scheme of the Alternate Arm Converter is presented in order to reduce the switching losses of the Director Switches (DS) and, accordingly, to implement the ZCS, a design procedure for the Arm inductor in the AAC is proposed. The capacitor voltage waveform is extracted analytically in different load power factors and the waveforms are verified by simulation results. A reliability-oriented switching frequency analysis for the modular multilevel converters is carried out to evaluate the effect of the switching frequency on the MMC's operation. For the latter, a DC fault analysis for the MMC with Full-Bridge (FB) power cells and the AAC is performed and a DC fault control scheme is employed to provide the capacitor voltage control and DC fault current limit, and is illustrated herein. / Master of Science

Page generated in 0.11 seconds