• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 12
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 126
  • 126
  • 36
  • 28
  • 23
  • 20
  • 20
  • 18
  • 17
  • 17
  • 16
  • 15
  • 14
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Joint diversity combining technique and adaptive modulation in wireless communications

Nam, Haewoon 28 August 2008 (has links)
Not available
112

Optical properties of asymmetric double quantum wells and optimization for optical modulators

Kim, Dong Kwon 25 March 2008 (has links)
Optical electroabsorption modulators (EAMs) that utilize quantum wells (QWs) are known to exhibit high modulation sensitivity, which is required for the analog optical fiber link application, compared to other types of optical modulators. QW-EAMs utilize the change of absorption coefficients that depends on the change of electric field across the QW for the optical intensity modulation. This dissertation focuses on the theoretical analysis of the optical properties of asymmetric double QWs (ADQWs) and the systematic optimization of modulation sensitivity in low-voltage EAMs that incorporate ADQWs. In this structure, the accurate calculation of excitons is especially important because the excitonic as well as the band-to-band optical transitions dominate the optical properties at the operating wavelength. The complex linear optical susceptibility was calculated within the density matrix approach in the quasi-equilibrium regime for the low excitation power and through a thorough treatment of line broadening. Transition strengths were calculated in the wavevector space, which effectively includes valence subband mixing with the warping of the subbands, excitonic mixing effects, and possible optical selection rules (e.g., light polarization, spin of excitons). The calculated transmission properties of the waveguide EAMs were almost identical to the experimental data at the device operating bias range. The mixing of excitons in ADQWs was analyzed in detail in momentum space, which was demonstrated to be very important in the process of structural optimization of ADQWs. The optimization of the structural parameters revealed that at an adequate barrier position and well width, the barrier thickness affects the modulation efficiency the most. Subsequently, in InGaAsP-based waveguide type QW-EAMs that operate at 1550 nm, the optimization of only one variable the thickness of the coupling barrier of the ADQWs shows 380 % enhancement in the modulation sensitivity at a much lower bias field (70->35 kV/cm) compared with that of single-QW structures. This enhancement is found to be caused by the strong mixing of the two exciton states originating in different subband pairs.
113

Optimal allocation of power to AMCS for maximum throughput in WCDMA /

Lu, Hong, January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2002. / Includes bibliographical references (p. 124-127). Also available in electronic format on the Internet.
114

Development of a soft-core based power electronic conversion controller

Nsumbu, Cassandra Daviane January 2014 (has links)
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2014. / The application of digital control techniques has become dominant in power electronics owing to several advantages they present, when compared to analogue solutions. Their development is based on the use of microprocessors and microcontrollers, such as Application Specific Integrated Circuit (ASIC), Digital signal processors (DSP), Field Programmable Gate Arrays (FPGA), or a combination of these devices. This thesis presents an investigation of a soft-core based FPGA control system as a solution for power electronic applications. The aim was the development and implementation of a conversion controller, which purpose is to supply control inputs in the form of digital Pulse Width Modulation (PWM) signals, to a number of power electronic applications, such as single half and full bridge DC-DC converters, three phase and multicell inverters. The PWM control technique is achieved via their power semiconductor switching devices. These PWM control signals are necessary for the high frequency conversion of an analog input voltage (AC, DC or unregulated) to an analog output voltage of another level (AC or DC). This was intended to be achieved by exploiting and combining the advantages that FPGA and embedded processors provide such as high reconfigurability and multipurpose ability. This controller’s digital outputs, namely PWM switching signals, can be directly delivered to an analog signal amplification circuit to create an adequate voltage level before being processed by the converters’ switches.
115

Emprego de modelo computacional para simulação da qualidade de água em redes de distribuição envolvendo múltiplas espécies / Use for computer simulation model of quality of water distribution network involving multiple species

Yoshikawa, Andréa Manami 19 August 2018 (has links)
Orientador: Edevar Luvizotto Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-19T05:21:31Z (GMT). No. of bitstreams: 1 Yoshikawa_AndreaManami_M.pdf: 2628428 bytes, checksum: 290bc37f63de4e2f4b6fe722bd4a7c43 (MD5) Previous issue date: 2011 / Resumo: Um estudo detalhado dos programas EPANET versão padrão e EPANET-MSX tornam-se relevante, no cenário nacional, como uma importante ferramenta, para avaliação da qualidade do produto transportado ao longo da rede de distribuição. Simulações de casos hipotéticos foram realizadas tendo por base as condições de: decaimento de cloro de múltiplas origens; oxidação, transferência de massa e adsorção do arsênio; recrescimento bacteriano com inibição de cloro; e decomposição da cloramina. A análise detalhada destes programas e a aplicação desses em estudo de casos, desenvolvidos nessa dissertação, objetivou contribuir para ampliar o conhecimento sobre os problemas da modelação computacional de qualidade de água em sistemas de abastecimento e distribuição de água / Abstract: A detailed study of computer programs EPANET standard version and EPANET-MSX, extended version for multiple species, becomes relevant since, only recently have simulations quality water came to be recognized on the national scene as a important tool for assessing the quality of the product carried across the network. Simulations of hypothetical cases were carried out relying on the conditions: multi-source chlorine decay; oxidation, mass transfer, and adsorption of arsenic; bacterial regrowth with chlorine inhibition; and chloramine decomposition. A detailed analysis of these programs and application (in studies of cases) (of such study cases developed) in this essay, aimed to contribute to enlarge knowledge about the problems of computer modeling quality of water supply systems and water distribution / Mestrado / Recursos Hidricos, Energeticos e Ambientais / Mestre em Engenharia Civil
116

Efficient multiuser cooperative relay communications employing layered modulations

Whang, Roderick Jaehoon 22 September 2011 (has links)
Relay-assisted cooperative communications are promising solutions for error-performance improvement and cell coverage extension. In this thesis, we propose several efficient cooperative relay communication schemes. First, an efficient space-time coded cooperative relay communications scheme that employs linear precoding and transmission-pattern selection is proposed. This is built upon an existing block linear precoding technique for conventional multiple-input multiple-output systems in order to improve the diversity performance of a multihop relay network. Second, we consider several multiuser cooperative relay communication schemes employing layered modulations, such as hierarchical modulation and superposition coding. Conventional cooperative relay communication is effective in mitigating fading effects. However, additional resources, such as time slots or frequency bands are required for the relay, which reduce the overall throughput. Reduction of throughput will become more severe as the number of users increases. In order to overcome this limitation, multiuser cooperative relaying schemes that employ hierarchical modulation and superposition coding are proposed. These schemes exploit the superimposed message for users in the network and allow the system to transmit two or more independent data streams simultaneously. The proposed schemes do not require additional resources than the conventional schemes, while improving the error performance by flexibly controlling the power division coefficient of superposition coding or the distance parameter of hierarchical modulation. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Sept. 28, 2011 - Sept. 28, 2012
117

Advanced Synchronization Techniques for Continuous Phase Modulation

Zhao, Qing 03 April 2006 (has links)
The objective of this research work is to develop reliable and power-efficient synchronization algorithms for continuous phase modulation (CPM). CPM is a bandwidth and power efficient signaling scheme suitable for wireless and mobile communications. Binary CPM schemes have been widely used in many commercial and military systems. CPM with multilevel symbol inputs, i.e., M-ary CPM, can achieve a higher data rate than binary CPM. However, the use of M-ary CPM has been limited due to receiver complexity and synchronization problems. In the last decade, serially concatenated CPM (SCCPM) has drawn more attention since this turbo-like coded scheme can achieve near Shannon-limit performance by performing iterative demodulation/decoding. Note that SCCPM typically operates at a low signal-to-noise ratio, which makes reliable and power-efficient synchronization more challenging. In this thesis, we propose a novel timing and phase recovery technique for CPM. Compared to existing maximum-likelihood estimators, the proposed data-aided synchronizer can achieve a better acquisition performance when a preamble is short or channel model errors are present. We also propose a novel adaptive soft-input soft-output (A-SISO) module for iterative detection with parameter uncertainty. In contrast to the existing A-SISO algorithms using linear prediction, the parameter estimation in the proposed structure is performed in a more general least-squares sense. Based on this scheme, a family of fixed-interval A-SISO algorithms are utilized to implement blind iterative phase synchronization for SCCPM. Moreover, the convergence characteristics of iterative phase synchronization and detection are analyzed by means of density evolution. Particularly, an oscillatory convergence behavior is observed when cycle slips occur during phase tracking. In order to reduce performance degradation due to this convergence fluctuation, design issues, including delay depth of the proposed algorithms, iteration-stopping criteria and interleaver size, are also discussed. Finally, for completeness of the study on phase synchronization, we investigate the error probability performance of noncoherently detected full-response CPM, which does not require channel (or phase) estimation.
118

Novel architectures for broadband free-space optical communications: deep-space and terrestrial optical links

Hashmi, Ali Javed 22 April 2010 (has links)
The main objective of this research is to design, simulate, and evaluate telescope array-based receiver architectures for the inter-planetary optical communication links, which is able to provide broadband data support for future deep-space and universe exploration missions. The major aspects of this research are as follows: (1) evaluation and performance comparison of telescope arrays-based receiver with a large, monolithic telescope-based receiver, (2) mathematical modeling and analysis of the impact of various limiting factors (i.e., background noise, atmospheric turbulence, synchronization and tracking errors) on the performance of optical array receiver, (3) design and evaluation of subsystems and adaptive signal processing algorithms for the mitigation of the above-mentioned deleterious effects, and (4) development of an end-to-end simulation and analysis platform for an optical communication link between a transmitter in Mars orbit and an Earth-based array receiver after integration of the proposed sub-systems. In the second part of this research, I aim to extend the analysis to the free-space, short-range, terrestrial optical communication links. In this part, the objective is the development of the efficient simulation tools for the analysis of receiver performance and optical beam propagation through turbulent atmospheric channel. In the experimental part of the research, the investigation of the use of adaptive optics (AO) subsystems for turbulence and background noise compensation in the deep-space optical communication links will be carried out.
119

Optical arbitrary waveform generation using chromatic dispersion in silica fibers

Von Eden, Elric Omar 14 June 2007 (has links)
A novel approach to optical pulse shaping and arbitrary waveform generation (OAWG) using time-domain spectral shaping (TDSS) in negative and positive dispersion in commercial optical fibers has been proposed and evaluated. In order to study the pulse shaping capability of this OAWG system, mathematical analysis was used to determine expressions for the expected output waveform under certain assumptions. Then, Matlab code was developed to model the propagation of an optical signal through a fiber with arbitrary characteristics as well as optical modulation using an electro-optic modulator. The code was first benchmarked to several well-known theoretical systems to ensure that it produced accurate results, and then it was used to examine the ability of this novel OAWG approach to generate different waveforms under various conditions. The results of numerous simulations are presented and used to qualitatively examine the ability of this system to perform OAWG in a real-world setting. Based on the results of simulations, mathematical modeling, as well as previous research in this area, it was determined that higher-order fiber dispersion could be a limitation to the time-bandwidth product and pulse shaping fidelity of this pulse shaping method. Additional dispersion compensation techniques were devised to help overcome these limitations such as the use of multiple dispersion-compensating fibers and spectral phase modulation. An OAWG system employing these techniques was also simulated using the developed Matlab code. Using these results, the possibility and feasibility of employing this system in various pulse shaping applications such as optical communications, are discussed and analyzed. Limitations of the system are also investigated, and methods to improve the system for future applications are suggested.
120

Control of power converters for distributed generation applications

Dai, Min. January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2006 Aug 15.

Page generated in 0.1506 seconds