• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 184
  • 184
  • 90
  • 44
  • 41
  • 29
  • 25
  • 17
  • 11
  • 11
  • 10
  • 9
  • 6
  • 6
  • Tagged with
  • 1085
  • 195
  • 136
  • 99
  • 96
  • 72
  • 65
  • 65
  • 64
  • 60
  • 55
  • 55
  • 55
  • 52
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A Novel Technique of Butterfly-type Laser Module Packaging Employing Coaxial Construction

Hung, Chen-Hsu 27 July 2010 (has links)
In this study, a novel technique (TO-Butterfly package) for butterfly-type laser module packaging based on the coaxial type structure is proposed. By applying the low cost TO packaging technique, the cost and fabrication time can be reduced, and the yield rate can be increased. The achievement can be employed to package the novel butterfly-type laser module in the fiber optics communication. In traditional butterfly-type module package, the PWS was large while saddle clip and fiber ferrule being jointed by laser welding after the fiber ferrule and laser being aligned. Therefore, the coupling efficiency and the yield rate are low with long fabrication time. On the contrary, the TO-Butterfly package, similar to TO-Can laser module, includes upper part and lower part. The direction of the main PWS in TO-Butterfly laser module parallels to the optical axis, in which direction the components are constrained. Therefore, the PWS takes less influence on the coupling efficiency. Furthermore, the aligning process between the fiber and the laser and laser welding process is completed on Newport LW4000 workstation to build up a TO-Butterfly TOSA. After that, the TO-Butterfly TOSA is taken out of the workstation and combined with the case through solder. As a result, the fabrication time can be reduced to one-third. And the coupling efficiency and yield rate can also be improved. After several times of process modification, the coupling efficiency of the 19 TO-Butterfly TOSA modules by applying the novel packaging technology was all over 70%. The average and the highest coupling efficiency were 81.3% and 95.7%, respectively, and the standard deviation was 6.5%.
42

Force Feedback Functions in Hexapod Robot Applications

Wu, Xian-Chern 02 September 2010 (has links)
none
43

On the modular design of analog on-chip buffer for circuit testing application

Liao, Jiun-Huei 31 August 2011 (has links)
When designing analog circuits, we must ultimately perform measurements on the fabricated chips to determine whether they work correctly or not. The test results are compared with simulation results to determine what the differences to the expected results are. Therefore, incremental improvement and redesign becomes possible. We can obtain highly important information from the test results, making circuit testing a very important aspect of the process of analog circuit design. Especially, measurements during the development phase may include internal circuit nodes which will not be accessible in a final design but are pinned out specifically in the development phase. Because the probing tools present capacitive loads to the circuit, these additional loads may affect the analog circuits‟ response, especially in a high frequency range. Therefore, decreasing influence of capacitive loads of the probing tools in the testing environment is very important. We use analog buffers to separate the analog circuit node from the probing tools. Therefore, the buffer becomes a very important block in analog circuit testing [1-3]. For adapting to different testing environments, this thesis examines three different types of buffer which are designed using a partially modular method [4, 5]. All buffers provide a DC to 1 MHz bandwidth. The first buffer module provides a -1.3 V~1.3 V signal range driving 25 pf~85 pf capacitive loads; the second buffer has a -0.8 V~0.8 V range with for 5 pf~25 pf loads; the third buffer yields -0.5 V~0.5 V range with 1 pf~5 pf loads. The circuit design is discussed and simulated results are presented. Finally, measured results are reported for an open-loop output stage with near unity gain (buffer three). This circuit was previously fabricated in 0.35 £gm CMOS technology.
44

Development of Systems to Improve Cotton Module Shape

Hardin, Robert Glen 2009 August 1900 (has links)
Properly constructed modules will prevent reduced lint value and increased ginning costs when significant rainfall occurs. Additionally, cotton producers often have difficulty finding adequate labor during harvest. These issues were addressed by developing a graphical operator feedback system, a biomass package measurement system, a powered tramper, and an autonomous module forming system. A system that provided feedback on the module shape by recording the position of the tramper and carriage was used to direct the operator to move cotton to appropriate locations. The system correctly predicted the height of 67% of data points. Use of the feedback system resulted in a 55% reduction in water collection area of the modules. The module builder operators indicated that the system was useful. The module builder feedback system is a simple, useful, and inexpensive tool that can have a rapid payback for producers. A powered tramper, with an auger to move cotton to the center of the module, was developed to replace the conventional tramper. The powered tramper operated automatically without affecting the operating speed or pressure of the tramper cylinder. During testing, the powered tramper was observed moving cotton to the center and crowned modules were produced. A biomass package measurement system was developed to record the height at multiple points on the top surface of modules. The system was found to produce repeatable measurements with an error of 5 cm. Data collected with this system did not indicate a difference in module shape when using the powered tramper; however, during these tests the powered tramper was turned off prematurely due to an improperly sized valve on the module builder. An automated module building system capable of both moving and tramping cotton was developed. This system utilized the feedback system sensors and photoelectric sensors to determine the location of cotton in the builder. A wireless display allowed the boll buggy operator to control the automatic system. The automatic system constructed modules with 64% less water collection area in an average time of 37.4 min. Cotton producers indicated that the system was easy to use and of significant value in reducing labor requirements.
45

A Study of Fiber Alignment Shift Measurement and Compensation in Laser Module Packages

Hsu, Yi-Cheng 14 March 2005 (has links)
The fiber alignment shifts induced by the post-weld-shift (PWS) in laser-welded TO(Transistor outline)-Can type laser module packages is studied experimentally and numerically. The PWS induced fiber alignment shifts were quantitatively determined by four geometrical parameters: the lateral shift(r), the position angle(£\), the tilt angle(£Z), and the swing angle(£c). The measured coupling powers in laser module packages before welding, after welding, and after a compensation clearly confirmed with the measured fiber alignment shifts determined by the dominant parameters of the r and £\ that the fiber shifts due to the PWS could be realigned back closer to their original optimum position after applying a welding compensation, and hence the coupling powers loss due to the PWS could be regained. The measured coupling efficiency after laser welding was from 68% to 95%, and the overall coupling efficiency after the PWS compensation was from 77% to 97%. The increased coupling efficiency after this PWS compensation was from 2% to16%. A coupled thermal-elasto-plasticity model of finite-element method (FEM) analysis was performed to evaluate the effects of PWS on fiber alignment shifts in laser module packages. The measured fiber alignment shifts determined by the dominant parameters of the r and £\ were in good agreement with the numerical calculation of the FEM analysis. In this study, the combination of the experimental and numerical results have significantly provided a practical design guideline for fabricating reliable laser-welded TO-Can type laser module packages with a high yield and high performance for use in low-cost lightwave transmission systems. A novel measurement and compensation technique employing a high-magnification camera with image capturing system (HMCICS) to probe the post-weld-shift (PWS) induced fiber alignment shifts in high-performance butterfly-type laser module packages is investigated. The results show that the direction and magnitude of the fiber alignment shifts induced by the PWS in laser-welded butterfly-type laser module packaging can be quantitatively determined and then compensated. The measured coupling powers in laser module packages after welding and compensation clearly confirmed the measured fiber alignment shifts determined by the translational and rotational parameters that the fiber shifts due to the PWS could be realigned back closer to their original optimum position after applying a welding compensation, and hence the coupling powers loss due to the PWS could be regained. The measured coupling efficiency after laser welding was from 63% to 79%, and the overall coupling efficiency after the PWS compensation was from 69% to 89%. The increased coupling efficiency after this PWS compensation was from 3% to 10%. In comparison with previous studies of the PWS compensation by a qualitatively estimated technique in butterfly-type laser module packages, this novel HMCICS technique has significantly provided an important tool for quantitative measurement and compensation to the effect of the PWS on the fiber alignment shifts in laser module packages. Therefore, the reliable butterfly-type laser modules with a high yield and a high performance used in lightwave transmission systems can be developed and fabricated.
46

Analysis of Film Waving in LCD Backlight Module

Su, Pei-chun 03 September 2005 (has links)
Liquid crystal display is the most valuable and universal produce of the electric monitor presently. Due to the non-luminant display device, it must use the light source of the backlight module to reach display effect . In backlight module field , it is focus on the even distribution of the light source and the perfect appearance without any defect occurrence. Besides, the existence of film waving will cause the bad phenomenon .To improve and avoid the defect occurrence,through the workable analysis experiment can find the real element progressively . In the experiment , we will focus on the characteristic of the film material and each material¡¦s dimension which analyze by BM-7 and Nieo LCD analyzer,etc. According to angle orientation.From the result,we can realize that the stronger structure material and larger heat capacity of Diffusion Film, will decrease the expand and shrink for temperature , and film waving caused by temperature changing, which may resolve the film waving effectively.
47

Thermal Deformation Effects on Characteristics of LCD Backlight Module

Tseng, Yu-Ming 09 September 2005 (has links)
The liquid crystal displays itself has a lot of advantages, such as thin thickness, slight weight and high brightness, etc. It is an important target for many engineers to develop the high brightness, uniformity, low power consumption and thin backlight module. Due to the temperature raising of the cold cathode fluorescence lamp (CCFL) in a backlight module of a LCD under long-term lighting state, the micro-optic-structure will deform and cause an uneven luminance phenomenon. In this research, was provided a method of creating a model with thermal deformation and how to draw this model by using PRO/EINGINEER. Then, one can transform the model into the optical software, ASAP, to make optical analysis. Finally, the thermal module can be studied.
48

The Fabrication of Laser Array Module by Flip Chip Technique

Hsieh, Cheng-Han 12 January 2001 (has links)
We have fabricated a laser array module using a passive self-aligned flip-chip bonding technique. Silicon optical bench was used as a submount with PbSn (Tm=183¢J) solder bump and V-grooves. A 4-channel laser array was flip-chip mounted with coupling efficiency of 56% to cleaved 62.5/125£gm multimode fiber ribbons. The optimum fabrication parameters were bonding time of 20 seconds and bonding load of 10g. The average misalignments were measured to be 1£gm and 5£gm for X and Y directions , respectively.
49

Post-weld-shift Measurement and Notch-Clip-Compensation Using Capacitance Displacement System in Butterfly Laser Module Packages

Hsu, Hung-kun 31 August 2008 (has links)
In this study, the capacitance displacement system (CDS) is employed to measure the post-weld-shift (PWS) induced by laser welding in butterfly type laser module package. The advantage of CDS is able to simultaneously and immediately measure the direction and the magnitude of PWS. Furthermore, with the aid of notch clip, the PWS can efficiently and quantitatively be compensated by laser hammering technique to regain the coupling power. Reduction of the PWS is an important issue in developing low-cost and high-performance laser modules. The package yield of laser modules can be imp roved due to the real-time measurement and quantitative compensation. In comparison with the high-magnification camera with image capturing system (HMCICS) having 0.7£gm resolution, the capacitance sensor achieves 25.4nm and 0.1£gm in its resolution and accuracy, respectively. Besides, during the package procedure, the real-time displacement detection can be used to adjust the package parameters. As a result, the PWS is reduced that contributes to less coupling power loss. After welding, the result reveals that the PWS was measured as X=0.15£gm and Y=-4.58£gm, while the coupling power is 43.19%.
50

SMD Type Metallic Reflection Cup LED Component on the Application of Backlight Module

Wang, Hui-chi 17 July 2009 (has links)
Nowadays, using the LED as backlight module's light source becomes generalization gradually, and the application of LED light source develops from the liquid crystal display to the liquid crystal TV. However, thermal dissipative problem of LED component is still an important issue to study presently, since it can affect the service lives of LED and LCD seriously. In order to increase the luminous energy of the LED component, one need to increase the supply of electric power and it will cause the increment of thermal dissipative problem of the LED component also. Therefore, by considering the LED components as the light source of the backlight module , the purpose of this study is to reduce number of the required LED components in order to decrease the thermal dissipative problem of LEDs, and maintain the luminous and uniformity of the backlight module simultaneously. A new packaging for LED, named SMD type metallic reflection cup LED component, was proposed in this study. The new LED package not only has a better thermal dissipative property, but also can control its radiation property by changing the angle of its reflection cup. So, the proposed LED package can be applied for different purposes. By applying the proposed LED components as the light source of a backlight module, under the condition of same illumination, it can be shown that the required number of LED components can be decreased tremendously and so the thermal dissipative problem can be decreased too. Also, the numerical simulated results showed that by choosing the suitable angle of the reflection cup, the uniformity of the backlight module can be improved. Besides, this study proposed a modified method for assessing the uniformity of a backlight module. The simulated results showed that the proposed method can assess the uniformity of a backlight module more suitable than the traditional nine points measurement method can do.

Page generated in 0.0337 seconds