• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 12
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modified Glycopeptides Targeting Rheumatoid Arthritis : Exploring molecular interactions in class II MHC/glycopeptide/T-cell receptor complexes

Andersson, Ida E. January 2011 (has links)
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that leads to degradation of cartilage and bone mainly in peripheral joints. In collagen-induced arthritis (CIA), a mouse model for RA, activation of autoimmune CD4+ T cells depends on a molecular recognition system where T-cell receptors (TCRs) recognize a complex between the class II MHC Aq protein and CII259-273, a glycopeptide epitope from type II collagen (CII). Interestingly, vaccination with the Aq/CII259-273 complex can relieve symptoms and cause disease regression in mice. This thesis describes the use of modified glycopeptides to explore interactions important for binding to the Aq protein and recognition by autoimmune T-cell hybridomas obtained from mice with CIA. The CII259-273 glycopeptide was modified by replacement of backbone amides with different amide bond isosteres, as well as substitution of two residues that anchor the glycopeptide in prominent pockets in the Aq binding site. A three-dimensional structure of the Aq/glycopeptide complex was modeled to provide a structural basis for interpretation of the modified glycopeptide’s immunological activities. Overall, it was found that the amide bond isosteres affected Aq binding more than could be explained by the static model of the Aq/glycopeptide complex. Molecular dynamics (MD) simulations, however, revealed that the introduced amide bond isosteres substantially altered the hydrogen-bonding network formed between the N-terminal 259-265 backbone sequence of CII259-273 and Aq. These results indicated that the N-terminal hydrogen-bonding interactions follow a cooperative model, where the strength and presence of individual hydrogen bonds depended on the neighboring interactions. The two important anchor residues Ile260 and Phe263 were investigated using a designed library of CII259-273 based glycopeptides with substitutions by different (non-)natural amino acids at positions 260 and 263. Evaluation of binding to the Aq protein showed that there was scope for improvement in position 263 while Ile was preferred in position 260. The obtained SAR understanding provided a valuable basis for future development of modified glycopeptides with improved Aq binding. Furthermore, the modified glycopeptides elicited varying T-cell responses that generally could be correlated to their ability to bind to Aq. However, in several cases, there was a lack of correlation between Aq binding and T-cell recognition, which indicated that the interactions with the TCRs were determined by other factors, such as presentation of altered epitopes and changes in the kinetics of the TCR’s interaction with the Aq/glycopeptide complex. Several of the modified glycopeptides were also found to bind well to the human RA-associated DR4 protein and elicit strong responses with T-cell hybridomas obtained from transgenic mice expressing DR4 and the human CD4 co-receptor. This encourages future investigations of modified glycopeptides that can be used to further probe the MHC/glycopeptide/TCR recognition system and that also constitute potential therapeutic vaccines for treatment of RA. As a step towards this goal, three modified glycopeptides presented in this thesis have been identified as candidates for vaccination studies using the CIA mouse model.
22

In silico tools in risk assessment : of industrial chemicals in general and non-dioxin-like PCBs in particular

Stenberg, Mia January 2012 (has links)
Industrial chemicals in European Union produced or imported in volumes above 1 tonne annually, necessitate a registration within REACH. A common problem, concerning these chemicals, is deficient information and lack of data for assessing the hazards posed to human health and the environment. Animal studies for the type of toxicological information needed are both expensive and time consuming, and to that an ethical aspect is added. Alternative methods to animal testing are thereby requested. REACH have called for an increased use of in silico tools for non-testing data as structure-activity relationships (SARs), quantitative structure-activity relationships (QSARs), and read-across. The main objective of the studies underlying this thesis is related to explore and refine the use of in silico tools in a risk assessment context of industrial chemicals. In particular, try to relate properties of the molecular structure to the toxic effect of the chemical substance, by using principles and methods of computational chemistry. The initial study was a survey of all industrial chemicals; the Industrial chemical map was created. A part of this map was identified including chemicals of potential concern. Secondly, the environmental pollutants, polychlorinated biphenyls (PCBs) were examined and in particular the non-dioxin-like PCBs (NDL-PCBs). A set of 20 NDL-PCBs was selected to represent the 178 PCB congeners with three to seven chlorine substituents. The selection procedure was a combined process including statistical molecular design for a representative selection and expert judgements to be able to include congeners of specific interest. The 20 selected congeners were tested in vitro in as much as 17 different assays. The data from the screening process was turned into interpretable toxicity profiles with multivariate methods, used for investigation of potential classes of NDL-PCBs. It was shown that NDL-PCBs cannot be treated as one group of substances with similar mechanisms of action. Two groups of congeners were identified. A group including in general lower chlorinated congeners with a higher degree of ortho substitution showed a higher potency in more assays (including all neurotoxic assays). A second group included abundant congeners with a similar toxic profile that might contribute to a common toxic burden. To investigate the structure-activity pattern of PCBs effect on DAT in rat striatal synaptosomes, ten additional congeners were selected and tested in vitro. NDL-PCBs were shown to be potent inhibitors of DAT binding. The congeners with highest DAT inhibiting potency were tetra- and penta-chlorinated with 2-3 chlorine atoms in ortho-position. The model was not able to distinguish the congeners with activities in the lower μM range, which could be explained by a relatively unspecific response for the lower ortho chlorinated PCBs. / Den europeiska kemikalielagstiftningen REACH har fastställt att kemikalier som produceras eller importeras i en mängd över 1 ton per år, måste registreras och riskbedömmas. En uppskattad siffra är att detta gäller för 30 000 kemikalier. Problemet är dock att data och information ofta är otillräcklig för en riskbedömning. Till stor del har djurförsök använts för effektdata, men djurförsök är både kostsamt och tidskrävande, dessutom kommer den etiska aspekten in. REACH har därför efterfrågat en undersökning av möjligheten att använda in silico verktyg för att bidra med efterfrågad data och information. In silico har en ungefärlig betydelse av i datorn, och innebär beräkningsmodeller och metoder som används för att få information om kemikaliers egenskaper och toxicitet. Avhandlingens syfte är att utforska möjligheten och förfina användningen av in silico verktyg för att skapa information för riskbedömning av industrikemikalier. Avhandlingen beskriver kvantitativa modeller framtagna med kemometriska metoder för att prediktera, dvs förutsäga specifika kemikaliers toxiska effekt. I den första studien (I) undersöktes 56 072 organiska industrikemikalier. Med multivariata metoder skapades en karta över industrikemikalierna som beskrev dess kemiska och fysikaliska egenskaper. Kartan användes för jämförelser med kända och potentiella miljöfarliga kemikalier. De mest kända miljöföroreningarna visade sig ha liknande principal egenskaper och grupperade i kartan. Genom att specialstudera den delen av kartan skulle man kunna identifiera fler potentiellt farliga kemiska substanser. I studie två till fyra (II-IV) specialstuderades miljögiftet PCB. Tjugo PCBs valdes ut så att de strukturellt och fysiokemiskt representerade de 178 PCB kongenerna med tre till sju klorsubstituenter. Den toxikologiska effekten hos dessa 20 PCBs undersöktes i 17 olika in vitro assays. De toxikologiska profilerna för de 20 testade kongenerna fastställdes, dvs vilka som har liknande skadliga effekter och vilka som skiljer sig åt. De toxicologiska profilerna användes för klassificering av PCBs. Kvantitativa modeller utvecklades för prediktioner, dvs att förutbestämma effekter hos ännu icke testade PCBs, och för att få ytterligare kunskap om strukturella egenskaper som ger icke önskvärda effekter i människa och natur. Information som kan användas vid en framtida riskbedömning av icke-dioxinlika PCBs. Den sista studien (IV) är en struktur-aktivitets studie som undersöker de icke-dioxinlika PCBernas hämmande effekt av signalsubstansen dopamin i hjärnan.
23

Systemic approach and decision process for sustainability in chemical engineering : Application to computer aided product design / Approche systémique et processus décisionnel pour le développement durable en génie des procédés : Application à la substitution de produits par formulation inverse

Heintz, Juliette 23 October 2012 (has links)
Dans un contexte de prise en compte croissante des enjeux environnementaux, l'industrie de la chimie et des procédés se retrouve confrontée à des problématiques de substitution de molécules. Les méthodes de formulation inverse, qui consistent en la recherche assistée par ordinateur de molécules satisfaisant un ensemble de contraintes, répondent de manière efficace à ces problématiques. A partir de l'analyse systémique des usages et fonctionnalités nécessaires dans ce contexte, nous développons un outil logiciel de formulation inverse mettant en oeuvre un algorithme génétique. Celui-ci est capable d'explorer un espace de solutions plus vaste en considérant les mélanges et non les molécules seules. Par ailleurs, il propose une définition des problèmes très flexible qui permet la recherche efficiente de molécules issues de filières renouvelables. En s'appuyant sur l'ingénierie système et l'ingénierie d'entreprise, nous proposons un processus formel de prise de décision pour la substitution de produit dans un contexte industriel. Ce processus de décision multi-critères englobe les phases de définition des exigences, de génération de solutions alternatives, de sélection de la meilleure alternative et de mise en oeuvre du produit. Il utilise une approche dirigée par les modèles et des techniques de prises de décision qui garantissent un alignement opérationnel en complément de l'alignement stratégique. A travers un cas d'étude, nous montrons comment l'utilisation conjointe de notre outil de recherche par formulation inverse et de notre processus de décision permet une démarche environnementale de substitution de produit à la fois efficiente et conforme à la réalité de l'entreprise. / In a context where environmental issues are increasingly taken into account, the chemical related industry faces situations imposing a chemical product substitution. Computer aided molecular design methods, which consist in finding molecules satisfying a set of constraints, are well adapted to these situations. Using a systemic analysis of the needs and uses linked to this context, we develop a computer aided product design tool implementing a genetic algorithm. It is able to explore a wider solution space thanks to a flexible molecular framework. Besides, by allowing a very flexible setting of the problem to be solved, it enables the search of molecules sourced from renewable resources. Based on concepts from system and enterprise engineering, we formalize a decision making process dedicated to the product substitution in an industrial context. This multi-criteria decision process includes the phases of the requirements definition, of the generation of alternative solutions, of the selection of the best alternative and of the product application. It uses a model driven approach and decision making techniques that guaranty an operational alignment in addition to the strategic alignment across the chemical enterprise. Through a case study, we expose how the combination of our computer aided product design tool and our decision making process enables an environmentally compliant approach of product substitution which is both efficient and in adequacy with enterprise context.
24

Desenvolupament del programari ArIS (Artificial Intelligence Suite): implementació d’eines de cribratge virtual per a la química mèdica

Estrada Tejedor, Roger 11 November 2011 (has links)
El disseny molecular de sistemes d’interès per a la química mèdica i per al disseny de fàrmacs sempre s’ha trobat molt lligat a la disponibilitat sintètica dels resultats. Des del moment que la química combinatòria s’incorpora dins de l’esquema sintètic, canvia el paper que ha de jugar la química computacional: la diversitat d’estructures possibles a sintetitzar fa necessària la introducció de mètodes, com el cribratge virtual, que permetin avaluar la viabilitat de grans quimioteques virtuals amb un temps raonable. Els mètodes quimioinformàtics responen a la necessitat anterior, posant a l’abast de l’usuari mètodes eficaços per a la predicció teòrica d’activitats biològiques o propietats d’interès. Dins d’aquests destaquen els mètodes basats en la relació quantitativa d’estructura-activitat (QSAR). Aquests han demostrat ser eficaços per l’establiment de models de predicció en l’àmbit farmacològic i biomèdic. S’ha avaluat la utilització de mètodes QSAR no lineals en la teràpia fotodinàmica del càncer, donat que és una de les línies de recerca d’interès del Grup d’Enginyeria Molecular (GEM) de l’IQS. El disseny de fotosensibilitzadors es pot realitzar a partir de la predicció de propietats fisicoquímiques (com l’espectre d’absorció i la hidrofobicitat del sistema molecular), i de l’estudi de la seva localització subcel•lular preferent, la qual ha demostrat recentment jugar un paper molt important en l’eficàcia del procés global. Per altra banda, les xarxes neuronals artificials són actualment un dels mètodes més ben valorats per a l’establiment de models QSAR no lineals. Donat l’interès de disposar d’un programari capaç d’aplicar aquests mètodes i que, a més, sigui prou versàtil i adaptable com per poder-se aplicar a diferents problemes, s’ha desenvolupat el programari ArIS. Aquest inclou els principals mètodes de xarxes neuronals artificials, per realitzar tasques de classificació i predicció quantitativa, necessaris per a l’estudi de problemes d’interès, com és la predicció de l’activitat anti-VIH d’anàlegs de l’AZT, l’optimització de formulacions químiques o el reconeixement estructural de grans sistemes moleculars / El diseño molecular de sistemas de interés para la química médica y para el diseño de fármacos siempre ha estado condicionado por la disponibilidad sintética de los resultados. Desde el momento en que la química combinatoria se incorpora en el esquema sintético, cambia el papel de la química computacional: la diversidad de estructuras que pueden sintetizarse hace necesaria la introducción de métodos, como el cribado virtual, que permitan evaluar la viabilidad de grandes quimiotecas virtuales en un tiempo razonable. Los métodos quimioinformáticos responden a la necesidad anterior, ofreciendo al usuario métodos eficaces para la predicción teórica de actividades biológicas o propiedades de interés. Entre ellos destacan los métodos basados en la relación cuantitativa de estructura-actividad (QSAR), que han demostrado ser eficaces para establecer modelos de predicción en el ámbito farmacológico y biomédico. Se ha evaluado la utilización de métodos QSAR no lineales en terapia fotodinámica del cáncer, dado que es una de las líneas de investigación de interés del Grup d’Enginyeria Molecular (GEM) del IQS. El diseño de fotosensibilizadores se puede realizar a partir de la predicción de propiedades fisicoquímicas (como su espectro de absorción o su hidrofobicidad) y del estudio de su localización subcelular preferente, la cual ha demostrado recientemente jugar un papel muy importante en la eficacia del proceso global. Por otro lado, las redes neuronales artificiales son actualmente uno de los métodos mejor valorados para establecer modelos QSAR no lineales. Es por ello que resulta muy interesante disponer de un programa capaz de aplicar estos métodos y que, además, sea lo suficientemente versátil y adaptable como para poder aplicarse a distintos problemas, según las necesidades del usuario. Por este motivo se ha desarrollado el programa ArIS, el cual incluye los principales métodos de redes neuronales artificiales para realizar tareas de clasificación y predicción cuantitativa, necesarios para el estudio de problemas de interés como la predicción de la actividad anti-VIH de análogos del AZT, la optimización de formulaciones químicas o el reconocimiento estructural de grandes sistemas moleculares. / Molecular modelling of interesting systems for medicinal chemistry and drug design highly depends on availability of synthetic results. Since combinatorial chemistry was incorporated into the synthetic scheme, the role of computational chemistry has changed: the structural diversity of candidates to be synthesized requires the introduction of computational methods which are able to screen large virtual libraries. Answering to this requirement, chemoinformatics offers many kinds of different methods for predicting biological activities and molecular properties. One of the most relevant techniques among them is Quantitative Structure-Activity Relationships (QSAR), which can be used to establish prediction models for both, pharmacological and biomedical sectors. The use of non- linear QSAR methods has been evaluated in photodynamic therapy of cancer, one of the research areas of the Grup d’Enginyeria Molecular (GEM) at IQS. Molecular design of photosensitizers can be performed by computational studies of their physicochemical properties (absorption spectra or hydrophobicity, for example) and subcellular localization, which becomes a key factor in the efficacy of the overall process. Furthermore, artificial neural networks are nowadays rated as one of the very best methods for establishing non-linear QSAR models. Developing software that includes all these methods would be certainly interesting. Implemented algorithms should be versatile and easily adaptable for their use in any problems. We have developed ArIS software, which includes the most important methods of artificial neural networks for classification and quantitative prediction. ArIS has been used to predict anti-HIV activity of AZT-analogues, for optimization of chemical formulations and for structural recognition in large molecular systems, among others.

Page generated in 0.0533 seconds