• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anàlisi de sèries temporals mitjançant la predicció amb xarxes neuronals artificials

Rifà Ros, Esteve Xavier 03 October 2008 (has links)
La Teoria de Sistemes Dinàmics proporciona eines per a l'anàlisi de Sèries Temporals (ST). Una de les eines proposada es porta a terme mitjançant la predicció no lineal de ST. Amb aquesta tècnica podem extreure algunes de les característiques que aquesta teoria proposa,com la Dimensió d'Immersió (DI) o la Sensibilitat a les Condicions Inicials (SCI). Sugihara y May(1990) han difós un mètode no paramètric que permet fer prediccions mitjançant l'observació de gràfics, procediment que creiem que afegeix una component de subjectivitat. Per superar aquesta dificultat proposem realitzar la presa de decisions mitjançant inferència estadística.El mètode que s'exposa en aquesta tesi es basa en la predicció no lineal amb Xarxes Neuronals Artificials (XNA). Hem realitzat un seguit d'experiments de simulació per estimar la DI i avaluar la SCI entrenant XNA. En el primer cas es pretén trobar un invariant en la predicció en funció del nombre de components de l'atractor reconstruït, a partir d'una ST observada. Aquest coincideix amb el valor de la DI en el que la predicció ja no millora encara que augmenti el nombre de components. En el segon cas, un cop entrenada la XNA, s'analitza si existeix una disminució significativa de la precisió en la predicció en funció del nombre d'iteracions d'aquesta. Si es dóna aquesta disminució es conclou que la ST és sensible a les condicions inicials. Per tal de provar aquesta nova tècnica que he proposat, he emprat ST simulades (component x del mapa de Hénon i de l'atractor de Rössler) sense soroll i amb dos nivells de soroll afegit. Per al primer conjunt de dades els resultats són consistents amb les nostres hipòtesis. D'altra banda, els resultats per a les dades de l'atractor de Rössler no són tan satisfactoris com era d'esperar en les nostres prediccions. / Researchers from Dynamical Systems Theory have developed tools for the analysis of Time Series (TS) data. Some of these, based on nonlinear forecasting, allow us to estimate some of the characteristics proposed under this approach like embedding dimension or sensitive dependence on initial conditions. Sugihara and May (1990) have shown a nonparametric forecasting method to assess these magnitudes based on the observation of graphics. This process is too subjective in the case where the results are not sufficiently clear. For this reason the goal of this investigation was to find a method of estimation based on statistical inference.Some simulation experiments have been developed to achieve more objective estimations of the embedding dimension and the assessment of sensitivity to initial conditions. The forecasting of TS in this dissertation has been performed using artificial neural networks. The set of experiments to estimate dimensionality are designed to find an invariant of the correct performance, as a function of the number of components of the reconstructed attractor. To asses the sensitivity to the initial conditions, the experiments will allow us to study the forecasting performance of the best trained network, as a function of the number of iterations.To test the experiments proposed we have used the Hénon and the Rössler data sets with different noise levels. The results show a good performance of the method used for the Hénon data set. On the other hand, the results for the Rössler data sets are not consistent with our hypotheses.
2

A new approach to Decimation in High Order Boltzmann Machines

Farguell Matesanz, Enric 20 January 2011 (has links)
La Màquina de Boltzmann (MB) és una xarxa neuronal estocàstica amb l'habilitat tant d'aprendre com d'extrapolar distribucions de probabilitat. Malgrat això, mai ha arribat a ser tant emprada com d'altres models de xarxa neuronal, com ara el perceptró, degut a la complexitat tan del procés de simulació com d'aprenentatge: les quantitats que es necessiten al llarg del procés d'aprenentatge són normalment estimades mitjançant tècniques Monte Carlo (MC), a través de l'algorisme del Temprat Simulat (SA). Això ha portat a una situació on la MB és més ben aviat considerada o bé com una extensió de la xarxa de Hopfield o bé com una implementació paral·lela del SA. Malgrat aquesta relativa manca d'èxit, la comunitat científica de l'àmbit de les xarxes neuronals ha mantingut un cert interès amb el model. Una de les extensions més rellevants a la MB és la Màquina de Boltzmann d'Alt Ordre (HOBM), on els pesos poden connectar més de dues neurones simultàniament. Encara que les capacitats d'aprenentatge d'aquest model han estat analitzades per d'altres autors, no s'ha pogut establir una equivalència formal entre els pesos d'una MB i els pesos d'alt ordre de la HOBM. En aquest treball s'analitza l'equivalència entre una MB i una HOBM a través de l'extensió del mètode conegut com a decimació. Decimació és una eina emprada a física estadística que es pot també aplicar a cert tipus de MB, obtenint expressions analítiques per a calcular les correlacions necessàries per a dur a terme el procés d'aprenentatge. Per tant, la decimació evita l'ús del costós algorisme del SA. Malgrat això, en la seva forma original, la decimació podia tan sols ser aplicada a cert tipus de topologies molt poc densament connectades. La extensió que es defineix en aquest treball permet calcular aquests valors independentment de la topologia de la xarxa neuronal; aquest model es basa en afegir prou pesos d'alt ordre a una MB estàndard com per a assegurar que les equacions de la decimació es poden solucionar. Després, s'estableix una equivalència directa entre els pesos d'un model d'alt ordre, la distribució de probabilitat que pot aprendre i les matrius de Hadamard: les propietats d'aquestes matrius es poden emprar per a calcular fàcilment els pesos del sistema. Finalment, es defineix una MB estàndard amb una topologia específica que permet entendre millor la equivalència exacta entre unitats ocultes de la MB i els pesos d'alt ordre de la HOBM. / La Máquina de Boltzmann (MB) es una red neuronal estocástica con la habilidad de aprender y extrapolar distribuciones de probabilidad. Sin embargo, nunca ha llegado a ser tan popular como otros modelos de redes neuronals como, por ejemplo, el perceptrón. Esto es debido a la complejidad tanto del proceso de simulación como de aprendizaje: las cantidades que se necesitan a lo largo del proceso de aprendizaje se estiman mediante el uso de técnicas Monte Carlo (MC), a través del algoritmo del Temple Simulado (SA). En definitiva, la MB es generalmente considerada o bien una extensión de la red de Hopfield o bien como una implementación paralela del algoritmo del SA. Pese a esta relativa falta de éxito, la comunidad científica del ámbito de las redes neuronales ha mantenido un cierto interés en el modelo. Una importante extensión es la Màquina de Boltzmann de Alto Orden (HOBM), en la que los pesos pueden conectar más de dos neuronas a la vez. Pese a que este modelo ha sido analizado en profundidad por otros autores, todavía no se ha descrito una equivalencia formal entre los pesos de una MB i las conexiones de alto orden de una HOBM. En este trabajo se ha analizado la equivalencia entre una MB i una HOBM, a través de la extensión del método conocido como decimación. La decimación es una herramienta propia de la física estadística que también puede ser aplicada a ciertos modelos de MB, obteniendo expresiones analíticas para el cálculo de las cantidades necesarias en el algoritmo de aprendizaje. Por lo tanto, la decimación evita el alto coste computacional asociado al al uso del costoso algoritmo del SA. Pese a esto, en su forma original la decimación tan solo podía ser aplicada a ciertas topologías de MB, distinguidas por ser poco densamente conectadas. La extensión definida en este trabajo permite calcular estos valores independientemente de la topología de la red neuronal: este modelo se basa en añadir suficientes pesos de alto orden a una MB estándar como para asegurar que las ecuaciones de decimación pueden solucionarse. Más adelante, se establece una equivalencia directa entre los pesos de un modelo de alto orden, la distribución de probabilidad que puede aprender y las matrices tipo Hadamard. Las propiedades de este tipo de matrices se pueden usar para calcular fácilmente los pesos del sistema. Finalmente, se define una BM estándar con una topología específica que permite entender mejor la equivalencia exacta entre neuronas ocultas en la MB y los pesos de alto orden de la HOBM. / The Boltzmann Machine (BM) is a stochastic neural network with the ability of both learning and extrapolating probability distributions. However, it has never been as widely used as other neural networks such as the perceptron, due to the complexity of both the learning and recalling algorithms, and to the high computational cost required in the learning process: the quantities that are needed at the learning stage are usually estimated by Monte Carlo (MC) through the Simulated Annealing (SA) algorithm. This has led to a situation where the BM is rather considered as an evolution of the Hopfield Neural Network or as a parallel implementation of the Simulated Annealing algorithm. Despite this relative lack of success, the neural network community has continued to progress in the analysis of the dynamics of the model. One remarkable extension is the High Order Boltzmann Machine (HOBM), where weights can connect more than two neurons at a time. Although the learning capabilities of this model have already been discussed by other authors, a formal equivalence between the weights in a standard BM and the high order weights in a HOBM has not yet been established. We analyze this latter equivalence between a second order BM and a HOBM by proposing an extension of the method known as decimation. Decimation is a common tool in statistical physics that may be applied to some kind of BMs, that can be used to obtain analytical expressions for the n-unit correlation elements required in the learning process. In this way, decimation avoids using the time consuming Simulated Annealing algorithm. However, as it was first conceived, it could only deal with sparsely connected neural networks. The extension that we define in this thesis allows computing the same quantities irrespective of the topology of the network. This method is based on adding enough high order weights to a standard BM to guarantee that the system can be solved. Next, we establish a direct equivalence between the weights of a HOBM model, the probability distribution to be learnt and Hadamard matrices. The properties of these matrices can be used to easily calculate the value of the weights of the system. Finally, we define a standard BM with a very specific topology that helps us better understand the exact equivalence between hidden units in a BM and high order weights in a HOBM.
3

Desenvolupament del programari ArIS (Artificial Intelligence Suite): implementació d’eines de cribratge virtual per a la química mèdica

Estrada Tejedor, Roger 11 November 2011 (has links)
El disseny molecular de sistemes d’interès per a la química mèdica i per al disseny de fàrmacs sempre s’ha trobat molt lligat a la disponibilitat sintètica dels resultats. Des del moment que la química combinatòria s’incorpora dins de l’esquema sintètic, canvia el paper que ha de jugar la química computacional: la diversitat d’estructures possibles a sintetitzar fa necessària la introducció de mètodes, com el cribratge virtual, que permetin avaluar la viabilitat de grans quimioteques virtuals amb un temps raonable. Els mètodes quimioinformàtics responen a la necessitat anterior, posant a l’abast de l’usuari mètodes eficaços per a la predicció teòrica d’activitats biològiques o propietats d’interès. Dins d’aquests destaquen els mètodes basats en la relació quantitativa d’estructura-activitat (QSAR). Aquests han demostrat ser eficaços per l’establiment de models de predicció en l’àmbit farmacològic i biomèdic. S’ha avaluat la utilització de mètodes QSAR no lineals en la teràpia fotodinàmica del càncer, donat que és una de les línies de recerca d’interès del Grup d’Enginyeria Molecular (GEM) de l’IQS. El disseny de fotosensibilitzadors es pot realitzar a partir de la predicció de propietats fisicoquímiques (com l’espectre d’absorció i la hidrofobicitat del sistema molecular), i de l’estudi de la seva localització subcel•lular preferent, la qual ha demostrat recentment jugar un paper molt important en l’eficàcia del procés global. Per altra banda, les xarxes neuronals artificials són actualment un dels mètodes més ben valorats per a l’establiment de models QSAR no lineals. Donat l’interès de disposar d’un programari capaç d’aplicar aquests mètodes i que, a més, sigui prou versàtil i adaptable com per poder-se aplicar a diferents problemes, s’ha desenvolupat el programari ArIS. Aquest inclou els principals mètodes de xarxes neuronals artificials, per realitzar tasques de classificació i predicció quantitativa, necessaris per a l’estudi de problemes d’interès, com és la predicció de l’activitat anti-VIH d’anàlegs de l’AZT, l’optimització de formulacions químiques o el reconeixement estructural de grans sistemes moleculars / El diseño molecular de sistemas de interés para la química médica y para el diseño de fármacos siempre ha estado condicionado por la disponibilidad sintética de los resultados. Desde el momento en que la química combinatoria se incorpora en el esquema sintético, cambia el papel de la química computacional: la diversidad de estructuras que pueden sintetizarse hace necesaria la introducción de métodos, como el cribado virtual, que permitan evaluar la viabilidad de grandes quimiotecas virtuales en un tiempo razonable. Los métodos quimioinformáticos responden a la necesidad anterior, ofreciendo al usuario métodos eficaces para la predicción teórica de actividades biológicas o propiedades de interés. Entre ellos destacan los métodos basados en la relación cuantitativa de estructura-actividad (QSAR), que han demostrado ser eficaces para establecer modelos de predicción en el ámbito farmacológico y biomédico. Se ha evaluado la utilización de métodos QSAR no lineales en terapia fotodinámica del cáncer, dado que es una de las líneas de investigación de interés del Grup d’Enginyeria Molecular (GEM) del IQS. El diseño de fotosensibilizadores se puede realizar a partir de la predicción de propiedades fisicoquímicas (como su espectro de absorción o su hidrofobicidad) y del estudio de su localización subcelular preferente, la cual ha demostrado recientemente jugar un papel muy importante en la eficacia del proceso global. Por otro lado, las redes neuronales artificiales son actualmente uno de los métodos mejor valorados para establecer modelos QSAR no lineales. Es por ello que resulta muy interesante disponer de un programa capaz de aplicar estos métodos y que, además, sea lo suficientemente versátil y adaptable como para poder aplicarse a distintos problemas, según las necesidades del usuario. Por este motivo se ha desarrollado el programa ArIS, el cual incluye los principales métodos de redes neuronales artificiales para realizar tareas de clasificación y predicción cuantitativa, necesarios para el estudio de problemas de interés como la predicción de la actividad anti-VIH de análogos del AZT, la optimización de formulaciones químicas o el reconocimiento estructural de grandes sistemas moleculares. / Molecular modelling of interesting systems for medicinal chemistry and drug design highly depends on availability of synthetic results. Since combinatorial chemistry was incorporated into the synthetic scheme, the role of computational chemistry has changed: the structural diversity of candidates to be synthesized requires the introduction of computational methods which are able to screen large virtual libraries. Answering to this requirement, chemoinformatics offers many kinds of different methods for predicting biological activities and molecular properties. One of the most relevant techniques among them is Quantitative Structure-Activity Relationships (QSAR), which can be used to establish prediction models for both, pharmacological and biomedical sectors. The use of non- linear QSAR methods has been evaluated in photodynamic therapy of cancer, one of the research areas of the Grup d’Enginyeria Molecular (GEM) at IQS. Molecular design of photosensitizers can be performed by computational studies of their physicochemical properties (absorption spectra or hydrophobicity, for example) and subcellular localization, which becomes a key factor in the efficacy of the overall process. Furthermore, artificial neural networks are nowadays rated as one of the very best methods for establishing non-linear QSAR models. Developing software that includes all these methods would be certainly interesting. Implemented algorithms should be versatile and easily adaptable for their use in any problems. We have developed ArIS software, which includes the most important methods of artificial neural networks for classification and quantitative prediction. ArIS has been used to predict anti-HIV activity of AZT-analogues, for optimization of chemical formulations and for structural recognition in large molecular systems, among others.

Page generated in 0.0605 seconds