Spelling suggestions: "subject:"rhetoriktheorie"" "subject:"triebtheorie""
1 |
Applied Mori theory of the moduli space of stable pointed rational curvesLarsen, Paul L. 19 April 2011 (has links)
Diese Dissertation befasst sich mit Fragen über den Modulraum M_{0,n} der stabilen punktierten rationalen Kurven, die durch das Mori-Programm motiviert sind. Insbesondere studieren wir den nef-Kegel (Chapter 2), den Cox-Ring (Chapter 3), und den Kegel der beweglichen Kurven (Chapter 4). In Kapitel 2 beweisen wir Fultons Vermutung für M_{0,n}, n / We investigate questions motivated by Mori''s program for the moduli space of stable pointed rational curves, M_{0,n}. In particular, we study its nef cone (Chapter 2), its Cox ring (Chapter 3), and its cone of movable curves (Chapter 4). In Chapter 2, we prove Fulton''s conjecture for M_{0,n} for n less than or equal to 7, which states that any divisor on these moduli spaces non-negatively intersecting all so-called F-curves is linearly equivalent to an effective sum of boundary divisors. As a corollary, it follows that a divisor is nef if and only if the divisor intersects all F-curves non-negatively. By duality, we thus recover Keel and McKernan''s result that the F-curves generate the closed cone of curves when n is less than or equal to seven, but with methods that do not rely on negativity properties of the canonical bundle that fail for higher n. Chapter 3 initiates a study of relations among generators of the Cox ring of M_{0,n}. We first prove a `relation-free'' result that exhibits polynomial subrings of the Cox ring in boundary section variables. In the opposite direction, we exhibit multidegrees such that the corresponding graded parts meet the ideal of relations non-trivially. In Chapter 4, we study the so-called complete intersection cone for the three-fold M_{0,6}. For a smooth projective variety X, this cone is defined as the closure of curve classes obtained as intersections of the dimension of X minus one very ample divisors. The complete intersection cone is contained in the cone of movable curves, which is dual to the cone of pseudoeffective divisors. We show that, for a series of toric birational models for M_{0,6}, the complete intersection and movable cones coincide, while for M_{0,6}, there is strict containment.
|
Page generated in 0.0402 seconds