• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 13
  • 12
  • 11
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Tilting trains : Enhanced benefits and strategies for less motion sickness

Persson, Rickard January 2011 (has links)
Carbody tilting is today a mature and inexpensive technology that allows higher train speeds in horizontal curves, thus shortening travel time. This doctoral thesis considers several subjects important for improving the competitiveness of tilting trains compared to non-tilting ones. A technology review is provided as an introduction to tilting trains and the thesis then focuses on enhancing the benefits and strategies for less motion sickness. A tilting train may run about 15% faster in curves than a non-tilting one but the corresponding simulated running time benefit on two Swedish lines is about 10%. The main reason for the difference is that speeds are set on other grounds than cant deficiency at straight track, stations, bridges, etc. The possibility to further enhance tilting trains’ running speed is studied under identified speed limitations due to vehicle-track interaction such as crosswind requirements at high speed curving. About 9% running time may be gained on the Stockholm–Gothenburg (457 km) mainline in Sweden if cant deficiency, top speed, and tractive performance are improved compared with existing tilting trains. Non-tilting high-speed trains are not an option on this line due to the large number of 1,000 m curves. Tilting trains run a greater risk of causing motion sickness than non-tilting trains. Roll velocity and vertical acceleration are the two motion components that show the largest increase, but the amplitudes are lower than those used in laboratory tests that caused motion sickness. Scientists have tried to find models that can describe motion sickness based on one or more motion quantities. The vertical acceleration model shows the highest correlation to motion sickness on trains with active tilt. However, vertical acceleration has a strong correlation to several other motions, which precludes vertical acceleration being pointed out as the principal cause of motion sickness in tilting trains. Further enhanced speeds tend to increase carbody motions even more, which may result in a higher risk of motion sickness. However, means to counteract the increased risk of motion sickness are identified in the present work that can be combined for best effect. Improved tilt control can prevent unnecessary fluctuations in motion sickness related quantities perceived by the passengers. The improved tilt control can also manage the new proposed tilt algorithms for less risk of motion sickness, which constitute one of the main achievements in the present study. Local speed restrictions are another means of avoiding increased peak levels of motion sickness when increasing the overall speed. The improved tilt control and the proposed tilt algorithms have proven to be effective in on-track tests involving more than 100 test subjects. The new tilt algorithms gave carbody motions closer to non-tilting trains. Rather unexpectedly, however, the test case with the largest decrease in tilt gave a greater risk of motion sickness than the two test cases with less reduction in tilt. It is likely that even better results can be achieved by further optimization of the tilt algorithms; the non-linear relation between motions and motion sickness is of particular interest for further study. / QC 20110429
22

Effects of Motion Sickness on Human Thermoregulatory Mechanisms

Nobel, Gerard January 2010 (has links)
The presented studies were performed to investigate the effects of motion sickness (MS) on human autonomic and behavioural thermoregulatory mechanisms during cold stress and in a thermoneutral environment. The roles of histaminergic and cholinergic neuron systems in autonomic thermoregulation and MS-dependent dysfunction of autonomic thermoregulation were studied using a histamine-receptor blocker, dimenhydrinate (DMH), and a muscarine-receptor blocker, scopolamine (Scop). In addition, the effects of these substances on MS-induced nausea and perceptual thermoregulatory responses were studied. MS was found to lower core temperature, during cold stress by attenuation of cold-induced vasoconstriction and decreased shivering thermogenesis, and in a thermoneutral environment by inducing sweating and vasodilatation. The increased core cooling during cold stress was counteracted by DMH but not by Scop. In a thermoneutral environment, the temperature was perceived as uncomfortably warm during and after the MS provocation despite decreases in both core and skin temperature. No such effect was seen during cold-water immersion. Both pharmacologic substances had per se different effects on autonomic thermoregulatory responses during cold stress. Scop decreased heat preservation, but did not affect core cooling, while DMH reduced the rate of core cooling through increased shivering thermogenesis. Both DMH and Scop per se decreased thermal discomfort during cold-water immersion.Findings support the notion of modulating roles of histamine (H) and acetylcholine (Ach) in autonomic thermoregulation and during MS. MS activates cholinergic and histaminergic pathways, thereby increasing the levels of H and Ach in several neuro-anatomical structures. As a secondary effect, MS also elevates blood levels of several neuropeptides, which in turn would influence central and/or peripheral thermoregulatory responses.In conclusion, MS may predispose to hypothermia, by impairment of autonomic thermoregulation in both cold and thermoneutral environments and by modulation of behavioural thermoregulatory input signals. This might have significant implications for survival in maritime accidents. / <p>Medicine doktorsexamen</p>
23

Validation of MobileMe : a psychophysiological recording system – from a motion sickness perspective

Almqvist, Ulf, Sjörs, Anna January 2006 (has links)
MobileMe is a recently developed system for monitoring and recording physiological variables. It is wireless, and can therefore be suitable for field research, for example when measuring motion sickness symptoms. The aim of this thesis was to conclude whether the MobileMe recording system was valid for research studies. A validation study, consisting of two parts and including 10 subjects, was performed. The first part was a laboratory study, where data from MobileMe and a reference equipment were compared. A field study was also performed, onboard a combat boat, to determine the equipment’s validity in uncontrolled environments. Furthermore, the field study included an investigation of motion sickness symptoms, and provided data for evaluation of motion sickness rating scales. Statistical results from the laboratory study, and results from evaluation of data from the field study, showed that MobileMe was valid in both controlled and uncontrolled environments.
24

Tilting trains : Technology, benefits and motion sickness

Persson, Rickard January 2008 (has links)
<p>Carbody tilting is today a mature and inexpensive technology allowing higher speeds in curves and thus reduced travel time. The technology is accepted by most train operators, but a limited set of issues still holding back the full potential of tilting trains. The present study identifies and report on these issues in the first of two parts in this thesis. The second part is dedicated to analysis of some of the identified issues. The first part contains Chapters 2 to 5 and the second Chapters 6 to 12 where also the conclusions of the present study are given.</p><p>Chapters 2 and 3 are related to the tilting train and the interaction between track and vehicle. Cross-wind stability is identified as critical for high-speed tilting trains. Limitation of the permissible speed in curves at high speed may be needed, reducing the benefit of tilting trains at very high speed. Track shift forces can also be safety critical for tilting vehicles at high speed. An improved track standard must be considered for high speed curving.</p><p>Chapters 4 and 5 cover motion sickness knowledge, which may be important for the competitiveness of tilting trains. However, reduced risk of motion sickness may be contradictory to comfort in a traditional sense, one aspect can not be considered without also considering the other. One pure motion is not the likely cause to the motion sickness experienced in motion trains. A combination of motions is much more provocative and much more likely the cause. It is also likely that head rotations contribute as these may be performed at much higher motion amplitudes than performed by the train.</p><p>Chapter 6 deals with services suitable for tilting trains. An analysis shows relations between cant deficiency, top speed, tractive performance and running times for a tilting train. About 9% running time may be gained on the Swedish line Stockholm – Gothenburg (457 km) if cant deficiency, top speed and tractive performance are improved compared with existing tilting trains. One interesting conclusion is that a non-tilting very high-speed train (280 km/h) will have longer running times than a tilting train with today’s maximum speed and tractive power. This statement is independent of top speed and tractive power of the non-tilting vehicle.</p><p>Chapters 7 to 9 describe motion sickness tests made on-track within the EU-funded research project<i> Fast And Comfortable Trains (FACT).</i> An analysis is made showing correlation between vertical acceleration and motion sickness. However, vertical acceleration could not be pointed out as the cause to motion sickness as the correlation between vertical acceleration and several other motions are strong.</p><p>Chapter 10 reports on design of track geometry. Guidelines for design of track cant are given optimising the counteracting requirements on comfort in non-tilting trains and risk of motion sickness in tilting trains. The guidelines are finally compared with the applied track cant on the Swedish line Stockholm – Gothenburg. Also transition curves and vertical track geometry are shortly discussed.</p><p>Chapters 11 and 12 discusses the analysis, draws conclusions on the findings and gives proposals of further research within the present area.</p>
25

Galvanic vestibular stimulation applied to flight training a thesis /

Hanson, Joel. Slivovsky, Lynne A. January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2009. / Mode of access: Internet. Title from PDF title page; viewed on Jan. 20, 2010. Major professor: Dr. Lynne Slivovsky. "Presented to the faculty of the College of Engineering, California Polytechnic State University." "In partial fulfillment of the requirements for the degree [of] Master of Science in Electrical Engineering." "July 2009." Includes bibliographical references (p. 102-104).
26

Pain, motion sickness and migraine: effects on symptoms and scalp blood flow

a.granston@murdoch.edu.au, Anna Cuomo-Granston January 2009 (has links)
Migraine, a neurovascular disorder, is associated with disturbances in brain stem activity during attacks. Interictal persistence of these disturbances might increase vulnerability to recurrent attacks of migraine. To explore this possibility, effects of motion sickness and pain on migrainous symptoms and extracranial vascular reponses were investigated in 27 migraine sufferers in the headache-free interval, and 23 healthy age/sex matched controls. Symptoms of migraine and motion sickness are remarkably similar. As both maladies involve reflexes that relay in the brain stem, they most probably share the same neural circuitry. Furthermore, migraineurs are usually susceptible to motion sickness and, conversely, motion sickness-prone individuals commonly experience migraine. Participants in the present study were exposed to optokinetic stimulation (OKS), a well-established way of inducing symptoms of motion sickness in susceptible individuals. Sensitivity to painful stimulation of the head and hand was also explored. Head pain is a hallmark of a migraine attack and cutaneous allodynia has been observed elsewhere in the body during attacks. The trigeminal nerve is associated with head pain in migraine, and trigeminal activity evokes reflexes that relay in the brain stem. To stimulate the trigeminal nerve, ice was applied to the temple. To stimulate nociceptors elsewhere in the body the participant immersed their fingers and palm in ice-water. Procedures used in this study were physically stressful and probably psychologically stressful. The impact of stress in relation to the development of symptomatic and vascular responses, particularly anticipatory stress-responses, was explored. This research involved one central experiment that consisted of six experimental conditions. On separate occasions participants were exposed to optokinetic stimulation and painful stimulation of the head or limb, individually and in combination. In migraine sufferers, symptomatic responses were enhanced during all procedures involving OKS and during temple pain after OKS, in the presence of residual motion sickness. During trigeminal stimulation independent of OKS, headache initially developed followed by nausea as the procedure progressed. In contrast, symptoms barely developed in controls during any of the six procedures except for slight dizziness, self-motion and visual-illusion during conditions involving OKS, and slight nausea when the temple was painfully stimulated during OKS and during OKS alone. Trigeminal stimulation during OKS intensified nausea and headache in migraine sufferers compared to during OKS alone or limb pain during OKS. However, the remaining symptomatic ratings were not affected by temple pain during OKS, suggesting a specific association between nausea and head pain. It may be that these cardinal symptoms compound one another during a migraine attack. Enhanced symptomatic responses in migraine sufferers during the headache interval may indicate activation of hypersensitive neural pathways that mediate symptoms of motion sickness or migraine. Migraineurs found procedures generally more unpleasant, and ice-induced pain ratings more intense and unpleasant, than controls, which may further indicate hyperexcitable nociception in this group, or a difference in their criterion of discomfort. Vascular responses, particularly during OKS alone, and during painful stimulation independent of OKS, were greater in migraine sufferers than in controls. The added stress of painful stimulation during OKS appeared to boost facial blood flow in controls to approach levels obtained in migraine sufferers. Enhanced vasodilatation was observed in migraineurs prior to painful stimulation, presumably due to anticipatory anxiety. For both groups ipsilateral vascular responses were greater than contralateral responses when the hand was painfully stimulated. During limb pain before OKS asymmetry was minimal in migraine sufferers but more apparent in controls. An enhanced stress response in migraineurs may have drawn ipsilateral and contralateral responses closer together. The development of symptoms during the procedures of this study provides an insight into how symptoms might develop sequentially in a migraine attack. Once the headache is in motion, nausea and headache may mutually exacerbate one another. In turn, trigemino-vascular responses and stress appear to be associated with the migraine crisis. Given the interactive nature of symptomatic, vascular, and stress responses, it may be more effective to target multiple, rather than individual, symptoms, in prophylactic or acute chemical and psychological interventions.
27

Sense-of-presence in virtual and real environments showing similar content : questionnaire development and relationships among sense-of-presence, performance, and cybersickness /

Ng, Toi Ying. January 2002 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2002. / Includes bibliographical references (leaves 139-146). Also available in electronic version. Access restricted to campus users.
28

Designing with Sound to Reduce Motion Sickness in VR

Kostrova, Marina, Yuri-Andersson, Victoria January 2020 (has links)
Motion sickness has been a significant obstacle for the development of Virtual Reality technology since the beginning of its existence. Research has shown that audio can be used to reduce motion sickness in VR. It has also been proven that binaural ambisonic audio can enhance a player’s feelings of immersion and spatial presence, which is known to correlate negatively with motion sickness. This study aims to determine if the application of spatialized binaural ambisonic audio in VR environments can make users feel less motion sick, by enhancing the feeling of presence, compared to environments that utilize regular stereo sound. To validate our hypothesis, two versions of the same VR environment were created: one with binaural ambisonic audio, and another with regular stereo audio. The data was collected with surveys that included both motion sickness-related and experience-related questions. The results indicate that binaural ambisonic audio helped to reduce motion sickness compared to regular stereo audio, even though testers did not show any clear preference for one type of sound over another. / Rörelsesjuka har utgjort ett allvarligt hinder för utveckling av virtual reality-teknologi  (VR) från dess tidigaste utvecklingsfas. Forskning har visat att ljud kan användas för reducering av rörelsesjuka i VR. Det har också påvisats att binauralt ambisoniskt ljud kan förstärka spelarens känsla av immersion och spatial närvaro, som har en negativ korrelation med rörelsesjuka. Denna studies syfte är att avgöra om  användning av spatialt binauralt ambisoniskt ljud i VR-miljö kan reducera användarens rörelsesjuka, genom att förstärka känslan av närvaro, till skillnad från miljöer där rådande stereoteknologi används. Hypotesen testades genom att två  versioner av samma VR-miljö skapades: ett med binauralt ambisonisk ljud och ett  med vedertaget stereoljud. Insamlad data genom ett frågeformulär inkluderade även frågor rörande rörelsesjuka och tidigare erfarenhet av VR. Resultatet indikerar att binauralt ambisoniskt ljud reducerar rörelsesjuka, till skillnad från stereoljud, trots att testpersonerna inte visade på en tydlig preferens för den ena eller den andra ljudtypen.
29

Vestibular suppression and space motion sickness

Cloutier, Annie. January 2007 (has links)
No description available.
30

Mitigation Of Motion Sickness Symptoms In 360 Degree Indirect Vision Systems

Quinn, Stephanie 01 January 2013 (has links)
The present research attempted to use display design as a means to mitigate the occurrence and severity of symptoms of motion sickness and increase performance due to reduced “general effects” in an uncoupled motion environment. Specifically, several visual display manipulations of a 360° indirect vision system were implemented during a target detection task while participants were concurrently immersed in a motion simulator that mimicked off-road terrain which was completely separate from the target detection route. Results of a multiple regression analysis determined that the Dual Banners display incorporating an artificial horizon (i.e., AH Dual Banners) and perceived attentional control significantly contributed to the outcome of total severity of motion sickness, as measured by the Simulator Sickness Questionnaire (SSQ). Altogether, 33.6% (adjusted) of the variability in Total Severity was predicted by the variables used in the model. Objective measures were assessed prior to, during and after uncoupled motion. These tests involved performance while immersed in the environment (i.e., target detection and situation awareness), as well as postural stability and cognitive and visual assessment tests (i.e., Grammatical Reasoning and Manikin) both before and after immersion. Response time to Grammatical Reasoning actually decreased after uncoupled motion. However, this was the only significant difference of all the performance measures. Assessment of subjective workload (as measured by NASA-TLX) determined that participants in Dual Banners display conditions had a significantly lower level of perceived physical demand than those with Completely Separated display designs. Further, perceived iv temporal demand was lower for participants exposed to conditions incorporating an artificial horizon. Subjective sickness (SSQ Total Severity, Nausea, Oculomotor and Disorientation) was evaluated using non-parametric tests and confirmed that the AH Dual Banners display had significantly lower Total Severity scores than the Completely Separated display with no artificial horizon (i.e., NoAH Completely Separated). Oculomotor scores were also significantly different for these two conditions, with lower scores associated with AH Dual Banners. The NoAH Completely Separated condition also had marginally higher oculomotor scores when compared to the Completely Separated display incorporating the artificial horizon (AH Completely Separated). There were no significant differences of sickness symptoms or severity (measured by self-assessment, postural stability, and cognitive and visual tests) between display designs 30- and 60-minutes post-exposure. Further, 30- and 60- minute post measures were not significantly different from baseline scores, suggesting that aftereffects were not present up to 60 minutes post-exposure. It was concluded that incorporating an artificial horizon onto the Dual Banners display will be beneficial in mitigating symptoms of motion sickness in manned ground vehicles using 360° indirect vision systems. Screening for perceived attentional control will also be advantageous in situations where selection is possible. However, caution must be made in generalizing these results to missions under terrain or vehicle speed different than what is used for this study, as well as those that include a longer immersion time.

Page generated in 0.0693 seconds