Spelling suggestions: "subject:"mouvement brownian avéré"" "subject:"mouvement brownian opéré""
1 |
Contributions à l'étude des processus gaussiensNourdin, Ivan 11 June 2008 (has links) (PDF)
Le chapitre 1 est principalement consacré au comportement asymptotique des variations à poids du mouvement brownien fractionnaire. Tout d'abord, après avoir motivé l'intérêt d'une telle étude et rappelé la situation ``sans poids'', nous voyons que dans certains cas (en fonction de la valeur de l'indice de Hurst H), la situation ``avec poids'' peut être très différente. Ensuite, nous nous intéressons plus particulièrement au cas où H vaut 1/4, et nous faisons le lien avec une conjecture récente par (Burdzy et) Swanson concernant la possibilité d'écrire une formule d'Itô pour la solution de l'équation de la chaleur stochastique dirigée par un bruit blanc espace-temps. Enfin, nous traitons le cas du mouvement brownien itéré, en faisant apparaître à la limite une version à poids du mouvement brownien en scène aléaoire introduit par Kesten et Spitzer dans les années 70.<br /><br />Le chapitre 2 présente des théorèmes limites abstraits (principalement valables pour une suite (F_n) d'intégrales multiples par rapport à un processus gaussien isonormal X) sous des hypothèses concernant la dérivée de Malliavin de F_n. Nous y exposons notamment une nouvelle méthode donnant (de manière étonnament simple) une estimation de type Berry-Esséen quand la suite (F_n) converge en loi vers une gaussienne. En particulier, cette méthode permet d'estimer la vitesse de convergence dans le classique théorème de Breuer et Major. Notons que les outils présentés dans ce chapitre sont la base des résultats obtenus dans le premier chapitre.<br /><br />Le chapitre 3 est consacré à mes travaux relatifs à la théorie de l'intégration contre des ``chemins rugueux'' (rough paths en anglais). Tout d'abord, nous faisons un lien avec l'intégration par régularisation à la Russo-Vallois. Ensuite, nous étudions un problème de contrôle optimal. Enfin, nous exploitons l'intégration algébrique récemment introduite par Gubinelli pour calculer le développement asymptotique de la ``loi'' de la solution d'une équation différentielle stochastique dirigée par un brownien fractionnaire d'une part, et pour étudier les équations différentielles avec retard dirigées par un chemin rugueux d'autre part.<br /><br />Enfin, dans le chapitre 4, nous définissons et étudions un nouvel objet, appelé ``dérivée stochastique''. Puis, nous illustrons certains phénomènes généraux en appliquant cette théorie au cas du mouvement brownien fractionnaire avec dérive.
|
2 |
Automates cellulaires probabilistes et processus itérés ad libitum / Probabilistic cellular automata and processes iterated ad libitumCasse, Jérôme 19 November 2015 (has links)
La première partie de cette thèse porte sur les automates cellulaires probabilistes (ACP) sur la ligne et à deux voisins. Pour un ACP donné, nous cherchons l'ensemble de ces lois invariantes. Pour des raisons expliquées en détail dans la thèse, ceci est à l'heure actuelle inenvisageable de toutes les obtenir et nous nous concentrons, dans cette thèse, surles lois invariantes markoviennes. Nous établissons, tout d'abord, un théorème de nature algébrique qui donne des conditions nécessaires et suffisantes pour qu'un ACP admette une ou plusieurs lois invariantes markoviennes dans le cas où l'alphabet E est fini. Par la suite, nous généralisons ce résultat au cas d'un alphabet E polonais après avoir clarifié les difficultés topologiques rencontrées. Enfin, nous calculons la fonction de corrélation du modèleà 8 sommets pour certaines valeurs des paramètres du modèle en utilisant une partie desrésultats précédents. / The first part of this thesis is about probabilistic cellular automata (PCA) on the line and with two neighbors. For a given PCA, we look for the set of its invariant distributions. Due to reasons explained in detail in this thesis, it is nowadays unthinkable to get all of them and we concentrate our reections on the invariant Markovian distributions. We establish, first, an algebraic theorem that gives a necessary and sufficient condition for a PCA to have one or more invariant Markovian distributions when the alphabet E is finite. Then, we generalize this result to the case of a polish alphabet E once we have clarified the encountered topological difficulties. Finally, we calculate the 8-vertex model's correlation function for some parameters values using previous results.The second part of this thesis is about infinite iterations of stochastic processes. We establish the convergence of the finite dimensional distributions of the α-stable processes iterated n times, when n goes to infinite, according to parameter of stability and to drift r. Then, we describe the limit distributions. In the iterated Brownian motion case, we show that the limit distributions are linked with iterated functions system.
|
Page generated in 0.0937 seconds