• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 27
  • 19
  • 11
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 139
  • 53
  • 49
  • 37
  • 36
  • 33
  • 32
  • 30
  • 26
  • 23
  • 23
  • 22
  • 21
  • 20
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Měnič pro fotovoltaické panely / Solar power inverter

Gottwald, Petr January 2016 (has links)
Tato práce se zabývá návrhem výkonového měniče určeného pro použití ve fotovoltaických systémech. Klíčovým je použití programovatelného hradlového pole (FPGA) pro realizaci řídicích funkcí. Do detailu jsou diskutovány aspekty návrhu spínaných měničů a na základě takto získaných poznatků je zkonstruován funkční vzorek měniče.
72

Three-phase multilevel solar inverter for motor drive system

Bhasagare, Mayuresh P. 04 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This thesis deals with three phase inverters and the different control strategies that can be associated with an inverter being used together. The first part of this thesis discusses the present research in the fields of PV panels, motor drive systems and three phase inverters along with their control. This control includes various strategies like MPPT, Volts-Hertz and modulation index compensation. Incorporating these techniques together is the goal of this thesis. A new topology for operating an open end motor drive system has also been discusses, where a boost converter and a flyback converter have been used in cascade to run a three phase motor. The main advantage of this is increasing the number of levels and improving the quality of the output voltage, not to mention a few other benefits of having the proposed circuit. A new algorithm has also been designed for starting and stopping the motor, which controls the current drawn from the power source during starting.
73

Remote MPPT measurementand logging system for solar modules

Westberg, Viktor, Eklund, Alexander January 2023 (has links)
We have designed and built a remote measurement system for evaluating the long-termperformance of solar photovoltaic (PV) modules. The system consists of a measurementdevice connected to the solar module which keeps the PV module at Maximum PowerPoint (MPP) and continuously measures the voltage and current at this point. Themeasurement device is battery powered and able to operate using power delivered by thePV module. The remaining power is dissipated in a MOSFET transistor. The measuredinformation is sent over LoRa radio to a receiver which inserts the data points over Wi-Fito the database InfluxDB for long-term storage and later examination
74

Mitigation of Electric Vehicle Charging Effects on Distribution Grids Through Smart-Charging and On-board Solar Charging

MOBARAK, MUHAMMAD HOSNEE January 2021 (has links)
Electric vehicles (EV) have become very popular in recent years because they are a more sustainable, efficient, and environmentally friendly transportation option than traditional fossil-fuel vehicles. Increased EV charging can cause overheating, accelerated aging, and eventual early failure of the distribution transformers, as the distribution networks have not been established foreseeing a large number of EVs as loads. This thesis makes contributions in two main areas to help reduce the accelerated aging of distribution transformers as the number of EVs on the road continues to rise. Firstly, vehicle smart charging is investigated to spread out the EV charging loads and hence decrease transformer heating and aging. Most EV smart charging algorithms require the use of extensive and costly infrastructure, including sensors, communication networks, controllable chargers, and central smart agents. This thesis proposes a new vehicle-directed smart charging strategy, called Random-In-Window (RIW) which allows individual vehicles to spread out their charging without any costly additional infrastructure. Detailed simulation results prove the advantages of this proposed algorithm. Secondly, to further reduce EV charging loads on the grid, a large-scale solar-charged electric vehicle (SEV) is proposed. While RIW smart charging has only grid benefits, SEVs can contribute to grid benefit, driver benefit, and environmental benefit, as shown through detailed simulation results, making it a viable solution to transformer aging mitigation. To turn the SEV concept into reality, this research also proposes a fast maximum power point tracking algorithm for partially shaded conditions, and an algorithm which optimizes photovoltaic (PV) cell size and arrangement along with the power electronic converter design for on-board solar charging. Thus, the proposed solutions in this research can help reduce distribution transformer aging as EV penetrations continue to rise and increase the environmental benefits of EVs through optimized solar charging. / Thesis / Doctor of Philosophy (PhD) / Overheating, accelerated aging, and eventual early failure of the distribution transformers caused by EV charging stress is a pressing concern that needs to be addressed. This thesis proposes two new vehicle-directed smart charging strategies and a concept of solar-charged electric vehicle (SEV) to help reduce the accelerated aging of distribution transformers. System level analysis of the mitigation of transformer aging using these two approaches with added driver and environmental benefits warrants the manufacturing and design challenges of the SEVs. Thus, this thesis proposes a fast and novel global maximum power point tracking algorithm well suited to fast moving vehicles for maximum solar power extraction at all times, especially during partial shading conditions, and an optimization process of the on-board PV cell dimension and number of such cells in series and parallel in the array based on power electronic converter for higher efficiency, lower cost, and lower mass.
75

Fpga-based Design Of A Maximum-power-point Tracking System For Space A

Persen, Todd 01 January 2004 (has links)
Satellites need a source of power throughout their missions to help them remain operational for several years. The power supplies of these satellites, provided primarily by solar arrays, must have high efficiencies and low weights in order to meet stringent design constraints. Power conversion from these arrays is required to provide robust and reliable conversion which performs optimally in varying conditions of peak power, solar flux, and occlusion conditions. Since the role of these arrays is to deliver power, one of the principle factors in achieving maximum power output from an array is tracking and holding its maximum-power point. This point, which varies with temperature, insolation, and loading conditions, must be continuously monitored in order to react to rapid changes. Until recently, the control of maximum power point tracking (MPPT) has been implemented in microcontrollers and digital signal processors (DSPs). While DSPs can provide a reasonable performance, they do not provide the advantages that field-programmable gate arrays (FPGA) chips can potentially offer to the implementation of MPPT control. In comparison to DSP implementations, FPGAs offer lower cost implementations since the functions of various components can be integrated onto the same FPGA chip as opposed to DSPs which can perform only DSP-related computations. In addition, FPGAs can provide equivalent or higher performance with the customization potential of an ASIC. Because FPGAs can be reprogrammed at any time, repairs can be performed in-situ while the system is running thus providing a high degree of robustness. Beside robustness, this reprogrammability can provide a high level of (i) flexibility that can make upgrading an MPPT control system easy by merely updating or modifying the MPPT algorithm running on the FPGA chip, and (ii) expandability that makes expanding an FPGA-based MPPT control system to handle multi-channel control. In addition, this reprogrammability provides a level of testability that DSPs cannot match by allowing the emulation of the entire MPPT control system onto the FPGA chip. This thesis proposes an FPGA-based implementation of an MPPT control system suitable for space applications. At the core of this system, the Perturb-and-observe algorithm is used to track the maximum power point. The algorithm runs on an Alera FLEX 10K FPGA chip. Additional functional blocks, such as the ADC interface, FIR filter, dither generator, and DAC interface, needed to support the MPPT control system are integrated within the same FPGA device thus streamlining the part composition of the physical prototype used to build this control system.
76

Analysis And Simulation Tools For Solar Array Power Systems

Pongratananukul, Nattorn 01 January 2005 (has links)
This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.
77

Boost Converter Inductor Sizing Effects on the Performance of MPPT Algorithms

Nonaka, Alan 01 August 2020 (has links) (PDF)
With solar power and other renewables set to take over the market in the coming decades, maximum power point tracking will be essential to optimizing power output. One underserved topic of research is the effect of inductor current ripple on performance of Maximum Power Point Tracking (MPPT) algorithms. Many new topologies are focused on decreasing the ripple from PV source to increase efficiency and power output. However, not much has been done to show ripple degrading performance of MPPT algorithms. This study uses a boost converter topology to test the performance of constant duty cycle step Perturb and Observe (PO), Incremental Conductance IC, and Constant Voltage (CV) PID over a range of inductor current ripple factor. Inductor current ripple is controlled solely by changing inductance. This study concluded that all three algorithms were quite robust and affected very little over an inductor current ripple factor range of 20% to 40%. One novel finding was increased duty cycle oscillation when the MPPT update and sample speed was faster than the boost converter response.
78

Wind Farm Control for Optimal Power Generation and Fatigue Reduction: Strategies and Experimentation in Wind Tunnel

Wang, Fa 05 June 2017 (has links)
No description available.
79

An Orthogonal Savonius-type Wind Turbine: Design and Experiments

Du, Yingkang 30 May 2016 (has links)
No description available.
80

Power Converter and Control Design for High-Efficiency Electrolyte-Free Microinverters

Gu, Bin 30 January 2014 (has links)
Microinverter has become a new trend for photovoltaic (PV) grid-tie systems due to its advantages which include greater energy harvest, simplified system installation, enhanced safety, and flexible expansion. Since an individual microinverter system is typically attached to the back of a PV module, it is desirable that it has a long lifespan that can match PV modules, which routinely warrant 25 years of operation. In order to increase the life expectancy and improve the long-term reliability, electrolytic capacitors must be avoided in microinverters because they have been identified as an unreliable component. One solution to avoid electrolytic capacitors in microinverters is using a two-stage architecture, where the high voltage direct current (DC) bus can work as a double line ripple buffer. For two-stage electrolyte-free microinverters, a high boost ratio dc-dc converter is required to increase the low PV module voltage to a high DC bus voltage required to run the inverter at the second stage. New high boost ratio dc-dc converter topologies using the hybrid transformer concept are presented in this dissertation. The proposed converters have improved magnetic and device utilization. Combine these features with the converter's reduced switching losses which results in a low cost, simple structure system with high efficiency. Using the California Energy Commission (CEC) efficiency standards a 250 W prototype was tested achieving an overall system efficiency of 97.3%. The power inversion stage of electrolyte-free microinverters requires a high efficiency grid-tie inverter. A transformerless inverter topology with low electro-magnetic interference (EMI) and leakage current is presented. It has the ability to use modern superjunction MOSFETs in conjunction with zero-reverse-recovery silicon carbide (SiC) diodes to achieve ultrahigh efficiency. The performance of the topology was experimentally verified with a tested CEC efficiency of 98.6%. Due to the relatively low energy density of film capacitors compared to electrolytic counterparts, less capacitance is used on the DC bus in order to lower the cost and reduce the volume of electrolyte-free microinverters. The reduced capacitance leads to high double line ripple voltage oscillation on DC bus. If the double line oscillation propagates back into the PV module, the maximum power point tracking (MPPT) performance would be compromised. A control method which prevents the double line oscillation from going to the PV modules, thus improving the MPPT performance was proposed. Finally, a control technique using a single microcontroller with low sampling frequency was presented to effectively eliminate electrolyte capacitors in two-stage microinverters without any added penalties. The effectiveness of this control technique was validated both by simulation and experimental results. / Ph. D.

Page generated in 0.2081 seconds