111 |
Estimating Costs of Reducing Environmental Emissions From a Dairy Farm: Multi-objective epsilon-constraint Optimization Versus Single Objective Constrained OptimizationEbadi, Nasim 08 July 2020 (has links)
Agricultural production is an important source of environmental emissions. While water quality concerns related to animal agriculture have been studied extensively, air quality issues have become an increasing concern. Due to the transfer of nutrients between air, water, and soil, emissions to air can harm water quality. We conduct a multi-objective optimization analysis for a representative dairy farm with two different approaches: nonlinear programming (NLP) and ϵ-constraint optimization to evaluate trade-offs among reduction of multiple pollutants including nitrogen (N), phosphorus (P), greenhouse gas (GHG), and ammonia. We evaluated twenty-six different scenar- ios in which we define incremental reductions of N, P, ammonia, and GHG from five to 25% relative to a baseline scenario. The farm entails crop production, livestock production (dairy and broiler), and manure management activities. Results from NLP optimization indicate that reducing P and ammonia emissions is relatively more expen- sive than N and GHG. This result is also confirmed by the ϵ-constraint optimization. However, the latter approach provides limited evidence of trade-offs among reduction of farm pollutants and net returns, while the former approach includes different re- duction scenarios that make trade-offs more evident. Results from both approaches indicate changes in crop rotation and land retirement are the best strategies to reduce N and P emissions while cow diet changes involving less forage represents the best strategy to reduce ammonia and GHG emissions. / Master of Science / Human activities often damage and deplete the environment. For instance, nutrient pollution into air and water, which mostly comes from agricultural and industrial activ- ities, results in water quality degradation. Thus, mitigating the detrimental impacts of human activities is an important step toward environmental sustainability. Reducing environmental impacts of nutrient pollution from agriculture is a complicated problem, which needs a comprehensive understanding of types of pollution and their reduction strategies. Reduction strategies need to be both feasible and financially viable. Con- sequently, practices must be carefully selected to allow farmers to maximize their net return while reducing pollution levels to reach a satisfactory level. Thus, this paper conducts a study to evaluate the trade-offs associated with farm net return and re- ducing the most important pollutants generated by agricultural activities. The results of this study show that reducing N and GHG emissions from a representative dairy farm is less costly than reducing P and ammonia emissions, respectively. In addition, reducing one pollutant may result in reduction of other pollutants. In general, for N and P emissions reduction land retirement and varying crop rotations are the most effective strategies. However, for reducing ammonia and GHG emissions focusing on cow diet changes involving less forage is the most effective strategy.
|
112 |
Environmental impact and life cycle assessment of biomass supported power systems for rural communitiesNandimandalam, Hariteja 11 May 2022 (has links) (PDF)
Dependence on fossil fuels in the electric sector is one of the major contributors towards Greenhouse gas (GHG) emissions. The increase in renewable contribution has been observed in recent years but there is still potential to utilize wood waste in rural communities for electricity generation promoting energy independence and sustainable development. For this study, a life cycle assessment approach was utilized to estimate the emissions of electricity produced from wood residue in a rural community. Therefore, the process from planting to supply for bioenergy facility to generate electricity are included. The results showed a decrease of 92-96 % in global warming potential resulting from the use of wood residues as compared to that of Grid electricity, natural gas, and coal-fired power plants. Then, a two-layer supply chain network comprising of feedstock supply sites and candidate power plant locations are considered to determine ideal locations for facilitating the bioenergy facility to minimize overall system cost and GHG emissions. The multi objective mathematical model aims to handle various decisions such as power plant location and technology selection, allocation of suppliers to power plants, biomass harvesting, storage, and transportation decisions in the considered supply chain network. The model developed was applied to case study region of Grenada County, Mississippi. The solution with no GHG restriction facilitates higher power plant capacity, 25 MW with lower system cost and satisfies 32.11 % of the total electricity demand of the case study area. Whereas the solution with highest GHG restrictions reduces the power plant capacity to 10 MW, that satisfies 10.22 % of the total electricity demand with increase in total overall system due to the increase in purchase of electricity from external sources as penalty cost. Furthermore, the investigation was extended to multiple counties of Mississippi to determine the feasibility of bioenergy facilities to be located using wood waste as fuel source. The techno-enviro-economic assessment showed the competitiveness of LCOE with the existing electricity supplier as well as other renewable sources such as solar, and wind. The findings of this research can facilitate in decision making process for promoting renewable energy in existing energy supply sources.
|
113 |
Optimization and Robustness in Planning and Scheduling Problems. Application to Container TerminalsRodríguez Molins, Mario 31 March 2015 (has links)
Tesis por compendio / Despite the continuous evolution in computers and information technology, real-world
combinatorial optimization problems are NP-problems, in particular in the domain of
planning and scheduling. Thus, although exact techniques from the Operations Research
(OR) field, such as Linear Programming, could be applied to solve optimization problems,
they are difficult to apply in real-world scenarios since they usually require too much computational
time, i.e: an optimized solution is required at an affordable computational time.
Furthermore, decision makers often face different and typically opposing goals, then resulting
multi-objective optimization problems. Therefore, approximate techniques from
the Artificial Intelligence (AI) field are commonly used to solve the real world problems.
The AI techniques provide richer and more flexible representations of real-world (Gomes
2000), and they are widely used to solve these type of problems. AI heuristic techniques
do not guarantee the optimal solution, but they provide near-optimal solutions in a reasonable
time. These techniques are divided into two broad classes of algorithms: constructive
and local search methods (Aarts and Lenstra 2003). They can guide their search processes
by means of heuristics or metaheuristics depending on how they escape from local optima
(Blum and Roli 2003). Regarding multi-objective optimization problems, the use of AI
techniques becomes paramount due to their complexity (Coello Coello 2006).
Nowadays, the point of view for planning and scheduling tasks has changed. Due to
the fact that real world is uncertain, imprecise and non-deterministic, there might be unknown
information, breakdowns, incidences or changes, which become the initial plans
or schedules invalid. Thus, there is a new trend to cope these aspects in the optimization
techniques, and to seek robust solutions (schedules) (Lambrechts, Demeulemeester, and
Herroelen 2008).
In this way, these optimization problems become harder since a new objective function
(robustness measure) must be taken into account during the solution search. Therefore,
the robustness concept is being studied and a general robustness measure has been developed
for any scheduling problem (such as Job Shop Problem, Open Shop Problem,
Railway Scheduling or Vehicle Routing Problem). To this end, in this thesis, some techniques
have been developed to improve the search of optimized and robust solutions in
planning and scheduling problems. These techniques offer assistance to decision makers
to help in planning and scheduling tasks, determine the consequences of changes, provide
support in the resolution of incidents, provide alternative plans, etc.
As a case study to evaluate the behaviour of the techniques developed, this thesis focuses
on problems related to container terminals. Container terminals generally serve
as a transshipment zone between ships and land vehicles (trains or trucks). In (Henesey
2006a), it is shown how this transshipment market has grown rapidly. Container terminals
are open systems with three distinguishable areas: the berth area, the storage yard,
and the terminal receipt and delivery gate area. Each one presents different planning and
scheduling problems to be optimized (Stahlbock and Voß 2008). For example, berth allocation,
quay crane assignment, stowage planning, and quay crane scheduling must be
managed in the berthing area; the container stacking problem, yard crane scheduling, and
horizontal transport operations must be carried out in the yard area; and the hinterland
operations must be solved in the landside area.
Furthermore, dynamism is also present in container terminals. The tasks of the container
terminals take place in an environment susceptible of breakdowns or incidences. For
instance, a Quay Crane engine stopped working and needs to be revised, delaying this
task one or two hours. Thereby, the robustness concept can be included in the scheduling
techniques to take into consideration some incidences and return a set of robust schedules.
In this thesis, we have developed a new domain-dependent planner to obtain more effi-
cient solutions in the generic problem of reshuffles of containers. Planning heuristics and
optimization criteria developed have been evaluated on realistic problems and they are
applicable to the general problem of reshuffling in blocks world scenarios.
Additionally, we have developed a scheduling model, using constructive metaheuristic
techniques on a complex problem that combines sequences of scenarios with different
types of resources (Berth Allocation, Quay Crane Assignment, and Container Stacking
problems). These problems are usually solved separately and their integration allows
more optimized solutions.
Moreover, in order to address the impact and changes that arise in dynamic real-world
environments, a robustness model has been developed for scheduling tasks. This model
has been applied to metaheuristic schemes, which are based on genetic algorithms. The
extension of such schemes, incorporating the robustness model developed, allows us to
evaluate and obtain more robust solutions. This approach, combined with the classical
optimality criterion in scheduling problems, allows us to obtain, in an efficient in way,
optimized solution able to withstand a greater degree of incidents that occur in dynamic
scenarios. Thus, a proactive approach is applied to the problem that arises with the presence
of incidences and changes that occur in typical scheduling problems of a dynamic real world. / Rodríguez Molins, M. (2015). Optimization and Robustness in Planning and Scheduling Problems. Application to Container Terminals [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48545 / Compendio
|
114 |
Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteriaGarcía Segura, Tatiana 03 November 2016 (has links)
[EN] Bridges, as an important component of infrastructure, are expected to meet all the requirements for a modern society. Traditionally, the primary aim in bridge design has been to achieve the lowest cost while guaranteeing the structural efficiency. However, concerns regarding building a more sustainable future have change the priorities of society. Ecological and durable structures are increasingly demanded. Under these premises, heuristic optimization methods provide an effective alternative to structural designs based on experience. The emergence of new materials, structural designs and sustainable criteria motivate the need to create a methodology for the automatic and accurate design of a real post-tensioned concrete bridge that considers all these aspects. For the first time, this thesis studies the efficient design of post-tensioned concrete box-girder road bridges from a sustainable point of view. This research integrates environmental, safety and durability criteria into the optimum design of the bridge. The methodology proposed provides multiple trade-off solutions that hardly increase the cost and achieve improved safety and durability. Likewise, this approach quantifies the sustainable criteria in economic terms, and evaluates the effect of these criteria on the best values of the variables.
In this context, a multi-objective optimization is formulated to provide multiple trade-off and high-performing solutions that balance economic, ecologic and societal goals. An optimization design program selects the best geometry, concrete type, reinforcement and post-tensioning steel that meet the objectives selected. A three-span continuous box-girder road bridge located in a coastal region is selected for a case study. This approach provides vital knowledge about this type of bridge in the sustainable context. The life-cycle perspective has been included through a lifetime performance evaluation that models the bridge deterioration process due to chloride-induced corrosion. The economic, environmental and societal impacts of maintenance actions required to extend the service life are examined. Therefore, the proposed goals for an efficient design have been switch from initial stage to life-cycle consideration.
Faced with the large computational time of multi-objective optimization and finite-element analysis, artificial neural networks (ANNs) are integrated in the proposed methodology. ANNs are trained to predict the structural response based on the design variables, without the need to analyze the bridge response. The multi-objective optimization problem results in a set of trade-off solutions characterized by the presence of conflicting objectives. The final selection of preferred solutions is simplified by a decision-making technique. A rational technique converts a verbal pairwise comparison between criteria with a degree of uncertainty into numerical values that guarantee the consistency of judgments. This thesis gives a guide for the sustainable design of concrete structures. The use of the proposed approach leads to designs with lower life-cycle cost and emissions compared to general design approaches. Both bridge safety and durability can be improved with a little cost increment by choosing the correct design variables. In addition, this methodology is applicable to any type of structure and material. / [ES] Los puentes, como parte importante de una infraestructura, se espera que reúnan todos los requisitos de una sociedad moderna. Tradicionalmente, el objetivo principal en el diseño de puentes ha sido lograr el menor coste mientras se garantiza la eficiencia estructural. Sin embargo, la preocupación por construir un futuro más sostenible ha provocado un cambio en las prioridades de la sociedad. Estructuras más ecológicas y duraderas son cada vez más demandadas. Bajo estas premisas, los métodos de optimización heurística proporcionan una alternativa eficaz a los diseños estructurales basados en la experiencia. La aparición de nuevos materiales, diseños estructurales y criterios sostenibles motivan la necesidad de crear una metodología para el diseño automático y preciso de un puente real de hormigón postesado que considere todos estos aspectos. Por primera vez, esta tesis estudia el diseño eficiente de puentes de hormigón postesado con sección en cajón desde un punto de vista sostenible. Esta investigación integra criterios ambientales, de seguridad estructural y durabilidad en el diseño óptimo del puente. La metodología propuesta proporciona múltiples soluciones que apenas encarecen el coste y mejoran la seguridad y durabilidad. Al mismo tiempo, se cuantifica el enfoque sostenible en términos económicos, y se evalúa el efecto que tienen dichos criterios en el valor óptimo de las variables.
En este contexto, se formula una optimización multiobjetivo que proporciona soluciones eficientes y de compromiso entre los criterios económicos, ecológicos y sociales. Un programa de optimización del diseño selecciona la mejor combinación de geometría, tipo de hormigón, armadura y postesado que cumpla con los objetivos seleccionados. Se ha escogido como caso de estudio un puente continuo en cajón de tres vanos situado en la costa. Este método proporciona un mayor conocimiento sobre esta tipología de puentes desde un punto de vista sostenible. Se ha estudiado el ciclo de vida a través de la evaluación del deterioro estructural del puente debido al ataque por cloruros. Se examina el impacto económico, ambiental y social que produce el mantenimiento necesario para extender la vida útil del puente. Por lo tanto, los objetivos propuestos para un diseño eficiente han sido trasladados desde la etapa inicial hasta la consideración del ciclo de vida.
Para solucionar el problema del elevado tiempo de cálculo debido a la optimización multiobjetivo y el análisis por elementos finitos, se han integrado redes neuronales en la metodología propuesta. Las redes neuronales son entrenadas para predecir la respuesta estructural a partir de las variables de diseño, sin la necesidad de analizar el puente. El problema de optimización multiobjetivo se traduce en un conjunto de soluciones de compromiso que representan objetivos contrapuestos. La selección final de las soluciones preferidas se simplifica mediante una técnica de toma de decisiones. Una técnica estructurada convierte los juicios basados en comparaciones por pares de elementos con un grado de incertidumbre en valores numéricos que garantizan la consistencia de dichos juicios. Esta tesis proporciona una guía que extiende y mejora las recomendaciones sobre el diseño de estructuras de hormigón dentro del contexto de desarrollo sostenible. El uso de la metodología propuesta lleva a diseños con menor coste y emisiones del ciclo de vida, comparado con diseños que siguen metodologías generales. Los resultados demuestran que mediante una correcta elección del valor de las variables se puede mejorar la seguridad y durabilidad del puente con un pequeño incremento del coste. Además, esta metodología es aplicable a cualquier tipo de estructura y material. / [CA] Els ponts, com a part important d'una infraestructura, s'espera que reunisquen tots els requisits d'una societat moderna. Tradicionalment, l'objectiu principal en el disseny de ponts ha sigut aconseguir el menor cost mentres es garantix l'eficiència estructural. No obstant això, la preocupació per construir un futur més sostenible ha provocat un canvi en les prioritats de la societat. Estructures més ecològiques i durables són cada vegada més demandades. Davall estes premisses, els mètodes d'optimització heurística proporcionen una alternativa eficaç als dissenys estructurals basats en l'experiència. L'aparició de nous materials, dissenys estructurals i criteris sostenibles motiven la necessitat de crear una metodologia per al disseny automàtic i precís d'un pont real de formigó posttesat que considere tots estos aspectos. Per primera vegada, esta tesi estudia el disseny eficient de ponts de formigó posttesat amb secció en calaix des d'un punt de vista sostenible. Esta investigació integra criteris ambientals, de seguretat estructural i durabilitat en el disseny òptim del pont. La metodologia proposada proporciona múltiples solucions que a penes encarixen el cost i milloren la seguretat i durabilitat. Al mateix temps, es quantifica l'enfocament sostenible en termes econòmics, i s'avalua l'efecte que tenen els dits criteris en el valor òptim de les variables.
En este context, es formula una optimització multiobjetivo que proporciona solucions eficients i de compromís entre els criteris econòmics, ecològics i socials. Un programa d'optimització del disseny selecciona la millor geometria, tipus de formigó, armadura i posttesat que complisquen amb els objectius seleccionats. S'ha triat com a cas d'estudi un pont continu en calaix de tres vans situat en la costa. Este mètode proporciona un major coneixement sobre esta tipologia de ponts des d'un punt de vista sostenible. S'ha estudiat el cicle de vida a través de l'avaluació del deteriorament estructural del pont a causa de l'atac per clorurs. S'examina l'impacte econòmic, ambiental i social que produïx el manteniment necessari per a estendre la vida útil del pont. Per tant, els objectius proposats per a un disseny eficient han sigut traslladats des de l'etapa inicial fins a la consideració del cicle de vida.
Per a solucionar el problema de l'elevat temps de càlcul degut a l'optimització multiobjetivo i l'anàlisi per elements finits, s'han integrat xarxes neuronals en la metodologia proposada. Les xarxes neuronals són entrenades per a predir la resposta estructural a partir de les variables de disseny, sense la necessitat d'analitzar el pont. El problema d'optimització multiobjetivo es traduïx en un conjunt de solucions de compromís que representen objectius contraposats. La selecció final de les solucions preferides se simplifica per mitjà d'una tècnica de presa de decisions. Una tècnica estructurada convertix els juís basats en comparacions per parells d'elements amb un grau d'incertesa en valors numèrics que garantixen la consistència dels dits juís. Esta tesi proporciona una guia que estén i millora les recomanacions sobre el disseny d'estructures de formigó dins del context de desenrotllament sostenible. L'ús de la metodologia proposada porta a dissenys amb menor cost i emissions del cicle de vida, comparat amb dissenys que seguixen metodologies generals. Els resultats demostren que per mitjà d'una correcta elecció del valor de les variables es pot millorar la seguretat i durabilitat del pont amb un xicotet increment del cost. A més, esta metodologia és aplicable a qualsevol tipus d'estructura i material. / García Segura, T. (2016). Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/73147
|
115 |
Modelling and multiobjective optimization for simulation of cyanobacterial metabolismSiurana Paula, Maria 06 November 2017 (has links)
The present thesis is devoted to the development of models and algorithms to improve metabolic simulations of cyanobacterial metabolism. Cyanobacteria are photosynthetic bacteria of great biotechnological interest to the development of sustainable bio-based manufacturing processes. For this purpose, it is fundamental to understand metabolic behaviour of these organisms, and constraint-based metabolic modelling techniques offer a platform for analysis and assessment of cell's metabolic functionality. Reliable simulations are needed to enhance the applicability of the results, and this is the main goal of this thesis.
This dissertation has been structured in three parts. The first part is devoted to introduce needed fundamentals of the disciplines that are combined in this work: metabolic modelling, cyanobacterial metabolism and multi-objective optimisation.
In the second part the reconstruction and update of metabolic models of two cyanobacterial strains is addressed. These models are then used to perform metabolic simulations with the application of the classic Flux Balance Analysis (FBA) methodology. The studies conducted in this part are useful to illustrate the uses and applications of metabolic simulations for the analysis of living organisms. And at the same time they serve to identify important limitations of classic simulation techniques based on mono-objective linear optimisation that motivate the search of new strategies.
Finally, in the third part a novel approach is defined based on the application of multi-objective optimisation procedures to metabolic modelling. Main steps in the definition of multi-objective problem and the description of an optimisation algorithm that ensure the applicability of the obtained results, as well as the multi-criteria analysis of the solutions are covered. The resulting tool allows the definition of non-linear objective functions and constraints, as well as the analysis of multiple Pareto-optimal solutions. It avoids some of the main drawbacks of classic methodologies, leading to more flexible simulations and more realistic results.
Overall this thesis contributes to the advance in the study of cyanobacterial metabolism by means of definition of models and strategies that improve plasticity and predictive capacities of metabolic simulations. / La presente tesis está dedicada al desarrollo de modelos y algoritmos para mejorar las simulaciones metabólicas de cianobacterias. Las cianobacterias son bacterias fotosintéticas de gran interés biotecnológico para el desarrollo de bioprocesos productivos sostenibles. Para este propósito, es fundamental entender el comportamiento metabólico de estos organismos, y el modelado metabólico basado en restricciones ofrece una plataforma para el análisis y la evaluación de las funcionalidades metabólicas de las células. Se necesitan simulaciones fidedignas para aumentar la aplicabilidad de los resultados, y este es el objetivo principal de esta tesis.
Esta disertación se ha estructurado en tres partes. La primera parte está dedicada a introducir los fundamentos necesarios de las disciplinas que se combinan en este trabajo: el modelado metabólico, el metabolismo de cianobacterias, y la optimización multiobjetivo.
En la segunda parte, se encara la reconstrucción y la actualización de los modelos metabólicos de dos cepas de cianobacterias. Estos modelos se usan después para llevar a cabo simulaciones metabólicas con la aplicación de la metodología clásica Flux Balance Analysis (FBA). Los estudios realizados en esta parte son útiles para ilustrar los usos y aplicaciones de las simulaciones metabólicas para el análisis de los organismos vivos. Y al mismo tiempo sirven para identificar importantes limitaciones de las técnicas clásicas de simulación basadas en optimización lineal mono-objetivo que motivan la búsqueda de nuevas estrategias.
Finalmente, en la tercera parte, se define una nueva aproximación basada en la aplicación al modelado metabólico de procedimientos de optimización multiobjetivo. Se cubren los principales pasos en la definición de un problema multiobjetivo y la descripción de un algoritmo de optimización que aseguren la aplicabilidad de los resultados obtenidos, así como el análisis multi-criterio de las soluciones. La herramienta resultante permite la definición de funciones objetivo y restricciones no lineales, así como el análisis de múltiples soluciones en el sentido de Pareto. Esta herramienta evita algunos de los principales inconvenientes de las metodologías clásicas, lo que lleva a obtener simulaciones más flexibles y resultados más realistas.
En conjunto, esta tesis contribuye al avance en el estudio del metabolismo de cianobacterias por medio de la definición de modelos y estrategias que mejoran la plasticidad y las capacidades predictivas de las simulaciones metabólicas. / La present tesi està dedicada al desenvolupament de models i algorismes per a millorar les simulacions metabòliques de cianobacteris. Els cianobacteris són bacteris fotosintètics de gran interés biotecnològic per al desenvolupament de bioprocessos productius sostenibles. Per a aquest propòsit, és fonamental entendre el comportament metabòlic d'aquests organismes, i el modelatge metabòlic basat en restriccions ofereix una plataforma per a l'anàlisi i l'avaluació de les funcionalitats metabòliques de les cèl·lules. Es necessiten simulacions fidedignes per a augmentar l'aplicabilitat dels resultats, i aquest és l'objectiu principal d'aquesta tesi.
Aquesta dissertació s'ha estructurat en tres parts. La primera part està dedicada a introduir els fonaments necessaris de les disciplines que es combinen en aquest treball: el modelatge metabòlic, el metabolisme de cianobacteris i l'optimització multiobjectiu.
En la segona part, s'adreça la reconstrucció i l'actualització dels models metabòlics de dos soques de cianobacteris. Aquests models s'empren després per a portar a terme simulacions metabòliques amb l'aplicació de la metodologia clàssica Flux Balance Analysis (FBA). Els estudis realitzats en aquesta part són útils per a il·lustrar els usos i aplicacions de les simulacions metabòliques per a l'anàlisi dels organismes vius. I al mateix temps serveixen per a identificar importants limitacions de les tècniques clàssiques de simulació basades en optimització lineal mono-objectiu que motiven la cerca de noves estratègies.
Finalment, en la tercera part, es defineix una nova aproximació basada en l'aplicació al modelatge metabòlic de procediments d'optimització multiobjectiu. Es cobreixen els principals passos en la definició d'un problema multiobjectiu i la descripció d'un algorisme d'optimització que asseguren l'aplicabilitat dels resultats obtinguts, així com l'anàlisi multi-criteri de les solucions. La ferramenta resultant permet la definició de funcions objectiu i restriccions no lineals, així com l'anàlisi de múltiples solucions òptimes en el sentit de Pareto. Aquesta ferramenta evita alguns dels principals inconvenients de les metodologies clàssiques, el que porta a obtenir simulacions més flexibles i resultats més realistes.
En conjunt, aquesta tesi contribueix a l'avanç en l'estudi del metabolisme de cianobacteris per mitjà de la definició de models i estratègies que milloren la plasticitat i les capacitats predictives de les simulacions metabòliques. / Siurana Paula, M. (2017). Modelling and multiobjective optimization for simulation of cyanobacterial metabolism [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90578
|
116 |
Energy Absorption of Metal-FRP Hybrid Square TubesKalhor, Roozbeh 07 February 2017 (has links)
Lower-cost manufacturing methods have increased the anticipation for economical mass production of vehicles manufactured from composite materials. One of the potential applications of composite materials in vehicles is in energy-absorbing components such as hollow shells and struts (these components may be in the form of circular cylindrical shells, square and rectangular tubes, conical shells, and frusta). However, constructions which result in brittle fracture of the composite tubes in the form of circumferential or longitudinal corner crack propagation may lead to unstable collapse failure mode and concomitant very low energy absorption. As a result, metal-composite hollow tubes have been developed that combine the benefits of stable ductile collapse of the metal (which can absorb crushing energy in a controlled manner) and the high strength-to-weight ratio of the composites. The relative and absolute thicknesses of metal or FRP section has a substantial effect on energy absorption of the hybrid tubes. In particular, likelihood of delamination occurrence raises with increase in FRP thickness. This can reduce the energy absorption capability of the metal-FRP hybrid tubes. Additionally, adding a very thick FRP section may result in a global buckling failure mode (rather than local folding). Until now, there are no studies specifically addressing the effect of FRP thickness on energy absorption of hybrid tubes. In this study, the effects of fiber orientation and FRP thickness (the number of layers) on the energy absorption of S2-glass/epoxy-304 stainless steel square tubes were experimentally investigated. In addition, a new geometrical trigger was demonstrated which has positive effects on the collapse modes, delamination in the FRP, and the crush load efficiency of the hybrid tube.
To complete this study, a new methodology including the combination of experimental results, numerical modeling, and a multi-objective optimization process was introduced to obtain the best combination of design variables for hybrid metal-composite tubes for crashworthiness applications. The experimental results for the S2 glass/epoxy-304 stainless steel square tubes with different configurations tested under quasi-static compression loading were used to validate numerical models implemented in LS-DYNA software. The models were able to capture progressive failure mechanisms of the hybrid tubes. In addition, the effects of the design variables on the energy absorption and failure modes of the hybrid tubes were explained. Subsequently, the results from the numerical models were used to obtain optimum crashworthiness functions. The load efficiency factor (the ratio of mean crushing load to maximum load) and ratio between the difference of mean crushing load of hybrid and metal tube and thickness of the FRP section were introduced as objective functions. To connect the variables and the functions, back-propagation artificial neural networks (ANN) were used. The Non-dominated Sorting Genetic Algorithm–II (NSGAII) was applied to the constructed ANNs to obtain optimal results. The results were presented in the form of Pareto frontiers to help designers choose optimized configurations based on their manufacturing limitations. Such restrictions may include, but are not limited to, cost (related to the number of layers), laminate architecture (fiber orientation and stacking sequence) which can be constrained by the manufacturing techniques (i.e. filament winding) and thickness (as an example of physical constraints). / Ph. D. / In a car accident, the incident energy must be absorbed by elements of the vehicles to prevent it from being transferred to the occupants. (Indeed, a vehicle that is not damaged in a crash may lead to significant injury to occupants.) Typical energy absorbing elements in a vehicle include hollow shells and struts in the crumple zone, bumpers, and airbags. The focus of this study is on hollow thin-walled tubes in the form of hybrid metal-composite square tubes which have the potential to provide cost-effective structures for energy absorption applications. The behavior of these elements is complicated, requiring computationally intensive and time-consuming computer simulations to analyze their failure and to improve their design. The time required for these simulations may lead to long times before new elements are introduced into the marketplace. Consequently, the objective of this study is to provide an efficient and fast methodology to obtain the best hybrid structures for crashworthiness applications. To support the computational modeling, experimental results obtained from the samples with different configurations tested under quasi-static compression loading were used to validate the models. The effect of fiber orientation, stacking sequence, and thickness of the composite on energy absorption and failure modes were predicted using the models. To reduce the time associated with computational modeling, artificial neural networks (ANNs) were employed to fit the response at selected training points and to generate a pool of responses at other points. These responses may then be used by a designer to choose the best solution for a set of competing design constraints.
|
117 |
Pareto multi-objective evolution of legged embodied organismsTeo, Jason T. W., Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW January 2003 (has links)
The automatic synthesis of embodied creatures through artificial evolution has become a key area of research in robotics, artificial life and the cognitive sciences. However, the research has mainly focused on genetic encodings and fitness functions. Considerably less has been said about the role of controllers and how they affect the evolution of morphologies and behaviors in artificial creatures. Furthermore, the evolutionary algorithms used to evolve the controllers and morphologies are pre-dominantly based on a single objective or a weighted combination of multiple objectives, and a large majority of the behaviors evolved are for wheeled or abstract artifacts. In this thesis, we present a systematic study of evolving artificial neural network (ANN) controllers for the legged locomotion of embodied organisms. A virtual but physically accurate world is used to simulate the evolution of locomotion behavior in a quadruped creature. An algorithm using a self-adaptive Pareto multi-objective evolutionary optimization approach is developed. The experiments are designed to address five research aims investigating: (1) the search space characteristics associated with four classes of ANNs with different connectivity types, (2) the effect of selection pressure from a self-adaptive Pareto approach on the nature of the locomotion behavior and capacity (VC-dimension) of the ANN controller generated, (3) the effciency of the proposed approach against more conventional methods of evolutionary optimization in terms of computational cost and quality of solutions, (4) a multi-objective approach towards the comparison of evolved creature complexities, (5) the impact of relaxing certain morphological constraints on evolving locomotion controllers. The results showed that: (1) the search space is highly heterogeneous with both rugged and smooth landscape regions, (2) pure reactive controllers not requiring any hidden layer transformations were able to produce sufficiently good legged locomotion, (3) the proposed approach yielded competitive locomotion controllers while requiring significantly less computational cost, (4) multi-objectivity provided a practical and mathematically-founded methodology for comparing the complexities of evolved creatures, (5) co-evolution of morphology and mind produced significantly different creature designs that were able to generate similarly good locomotion behaviors. These findings attest that a Pareto multi-objective paradigm can spawn highly beneficial robotics and virtual reality applications.
|
118 |
Relais coopératifs dans un réseau de capteurs : performances limites et stratégies / Cooperative Relaying in sensor network : performances, limits and startegiesBen Nacef, Ahmed 24 November 2011 (has links)
Les réseaux de capteurs ont connu un grand essor ces dix dernières années. Ils interviennent dans tous les domaines de notre vie quotidienne et la rendent plus aisée. Malgré ce grand succès des réseaux de capteurs, plusieurs problèmes restent encore ouverts. La capacité énergétique et la fragilité du canal radio des réseaux de capteurs affectent gravement leurs performances. La communication coopérative représente une solution efficace pour lutter contre l'instabilité du canal radio et afin d'économiser plus d'énergie. Nous proposons dans ce manuscrit, d'utiliser la communication coopérative, en premier lieu, au niveau de la couche MAC afin de mettre en place un accès au canal coopératif et non égoïste. En second lieu, nous utilisons la communication coopérative au niveau de la couche réseau dans le but d'établir des chemins de routage plus stables et plus robustes. / Wireless sensor networks (WSN) have known a great development during the last decade. They intervene in all the domain of our everyday life to make it easier. Despite the success of WSN several problems have to be solved. The restricted energy capacity and the randomness of the wireless channel seriously affect the performances of the WSN. Cooperative communication represents an efficient solution to reduce the instability of the wireless channel and to optimize energy. In this thesis we propose to use cooperative communications at the MAC and network layer in order to set up a cooperative access to the channel and to establish more robust routing paths.
|
119 |
An efficient ranking analysis in multi-criteria decision makingJaini, Nor January 2017 (has links)
This study is conducted with the aims to develop a new ranking method for multi-criteria decision making problem with conflicting criteria. Such a problem has a set of Pareto solutions, where the act of improving a value of one solution will result in depreciating some of the others. Thus, in this type of problem, there is no unique solution. However, out of many available options, the Decision Maker eventually has to choose only one solution. With this problem as the motivation, the current study develops a compromise ranking algorithm, namely a trade-off ranking method. The trade-off ranking method able to give a trade-off solution with the least compromise compared to other choices as the best solution. The properties of the algorithm are studied in the thesis on several test cases. The proposed method is compared against several multi-criteria decision making methods with ranking based on the distance measure, which are the TOPSIS, relative distance and VIKOR. The sensitivity analysis and uncertainty test are carried out to examine the methods robustness. A critical criteria analysis is also done to test for the most critical criterion in a multi-criteria problem. The decision making method is considered further in a fuzzy environment problem where the fuzzy trade-off ranking is developed and compared against existing fuzzy decision making methods.
|
120 |
Planejamento de sistemas de distribuição de energia elétrica considerando questões de confiabilidade e risco / Power distribution system planning considering reliability and riskAlmeida, Eleandro Marcondes de 01 April 2016 (has links)
O problema de Planejamento da Expansão de Sistemas de Distribuição (PESD) visa determinar diretrizes para a expansão da rede considerando a crescente demanda dos consumidores. Nesse contexto, as empresas distribuidoras de energia elétrica têm o papel de propor ações no sistema de distribuição com o intuito de adequar o fornecimento da energia aos padrões exigidos pelos órgãos reguladores. Tradicionalmente considera-se apenas a minimização do custo global de investimento de planos de expansão, negligenciando-se questões de confiabilidade e robustez do sistema. Como consequência, os planos de expansão obtidos levam o sistema de distribuição a configurações que são vulneráveis a elevados cortes de carga na ocorrência de contingências na rede. Este trabalho busca a elaboração de uma metodologia para inserir questões de confiabilidade e risco ao problema PESD tradicional, com o intuito de escolher planos de expansão que maximizem a robustez da rede e, consequentemente, atenuar os danos causados pelas contingências no sistema. Formulou-se um modelo multiobjetivo do problema PESD em que se minimizam dois objetivos: o custo global (que incorpora custo de investimento, custo de manutenção, custo de operação e custo de produção de energia) e o risco de implantação de planos de expansão. Para ambos os objetivos, são formulados modelos lineares inteiros mistos que são resolvidos utilizando o solver CPLEX através do software GAMS. Para administrar a busca por soluções ótimas, optou-se por programar em linguagem C++ dois Algoritmos Evolutivos: Non-dominated Sorting Genetic Algorithm-2 (NSGA2) e Strength Pareto Evolutionary Algorithm-2 (SPEA2). Esses algoritmos mostraram-se eficazes nessa busca, o que foi constatado através de simulações do planejamento da expansão de dois sistemas testes adaptados da literatura. O conjunto de soluções encontradas nas simulações contém planos de expansão com diferentes níveis de custo global e de risco de implantação, destacando a diversidade das soluções propostas. Algumas dessas topologias são ilustradas para se evidenciar suas diferenças. / The Distribution System Expansion Planning (DSEP) problem aims to determine guidelines to expand the network considering the growing demand of customers. In this context, the distribution companies have to propose actions for improvements in the distribution system in order to adjust the supply of energy to the standards required by regulators. Traditionally minimizing the global cost of expansion plans is the only goal that is considered, thus reliability and robustness issues are neglected. As a result, the optimal expansion plans lead the distribution system to configurations that are vulnerable to high load shedding under the occurrence of contingencies in the network. This work aims to develop a methodology to insert reliability and risk issues to the traditional DSEP problem in order to maximize the robustness of the network and hence mitigate the system damages caused by contingencies. We formulated a multi-objective model of the problem that compromises two objectives: minimization of the global cost (that comprises investment cost, maintenance cost, operational cost, and production cost) and minimization of the deployment risk of expansion plans. For both objectives, we formulated mixed integer linear models which are solved using CPLEX accessed through GAMS. To manage the search for optimal solutions, we chose to implement in C++ language two Evolutionary Algorithms (EAs): Non-dominated Sorting Genetic Algorithm-2 (NSGA2) and Strength Pareto Evolutionary Algorithm-2 (SPEA2). The effectiveness of both algorithms was verified through simulations of the expansion planning of two test systems, adapted from the literature. The set of solutions that has been found contains expansion plans with different levels of global cost and deployment risk. Some of these topologies are depicted to show this diversity of the proposed solutions.
|
Page generated in 0.5547 seconds