• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 14
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Analysis of a Multi-Code Multi-Carrier CDMA Communication System

Jin Woo, Lee January 2004 (has links)
No description available.
2

Phase Noise in Multi-carrier Systems

Sridharan, Gokul 11 January 2011 (has links)
This thesis concerns the effect of phase noise (PHN) on multi-carrier systems such as OFDM and the detection of multi-carrier symbols affected by PHN. It is known that PHN causes mixing between sub-carriers resulting in inter-carrier interference (ICI) and rotates symbols on every sub-carrier by a certain angle called the common phase error (CPE). We explore how these two effects arise and show that these two effects are coupled to each other. We also note that higher order M-QAM constellations like 64-QAM are more sensitive to CPE than smaller constellations like 4-QAM. Based on our observations on CPE, we propose a blind CPE estimation algorithm. We then address the issue of ICI and propose a turbo receiver design to mitigate it.
3

Phase Noise in Multi-carrier Systems

Sridharan, Gokul 11 January 2011 (has links)
This thesis concerns the effect of phase noise (PHN) on multi-carrier systems such as OFDM and the detection of multi-carrier symbols affected by PHN. It is known that PHN causes mixing between sub-carriers resulting in inter-carrier interference (ICI) and rotates symbols on every sub-carrier by a certain angle called the common phase error (CPE). We explore how these two effects arise and show that these two effects are coupled to each other. We also note that higher order M-QAM constellations like 64-QAM are more sensitive to CPE than smaller constellations like 4-QAM. Based on our observations on CPE, we propose a blind CPE estimation algorithm. We then address the issue of ICI and propose a turbo receiver design to mitigate it.
4

New advances in symbol timing synchronization of single-carrier, multi-carrier and space-time multiple-antenna systems

Wu, Yik Chung 01 November 2005 (has links)
In this dissertation, the problem of symbol timing synchronization for the following three different communication systems is studied: 1) conventional single-carrier transmissions with single antenna in both transmitter and receiver; 2) single-carrier transmissions with multiple antennas at both transmitter and receiver; and 3) orthogonal frequency division multiplexing (OFDM) based IEEE 802.11a wireless local area networks (WLANs). For conventional single-carrier, single-antenna systems, a general feedforward symbol-timing estimation framework is developed based on the conditional maximum likelihood principle. The proposed algorithm is applied to linear modulations and two commonly used continuous phase modulations: MSK and GMSK. The performance of the proposed estimator is analyzed analytically and via simulations. Moreover, using the newly developed general estimation framework, all the previously proposed digital blind feedforward symbol timing estimators employing second-order statistics are cast into a unified framework. The finite sample mean-square error expression for this class of estimators is established and the best estimators are determined. Simulation results are presented to corroborate the analytical results. Moving on to single-carrier, multiple-antenna systems, we present two algorithms. The first algorithm is based on a heuristic argument and it improves the optimum sample selection algorithm by Naguib et al. so that accurate timing estimates can be obtained even if the oversampling ratio is small. The performance of the proposed algorithm is analyzed both analytically and via simulations. The second algorithm is based on the maximum likelihood principle. The data aided (DA) and non-data aided (NDA) ML symbol timing estimators and their cor- responding CCRB and MCRB in MIMO correlated ??at-fading channels are derived. It is shown that the improved algorithm developed based on the heuristic argument is just a special case of the DA ML estimator. Simulation results under different operating conditions are given to assess and compare the performances of the DA and NDA ML estimators with respect to their corresponding CCRBs and MCRBs. In the last part of this dissertation, the ML timing synchronizer for IEEE 802.11a WLANs on frequency-selective fading channels is developed. The proposed algorithm is compared with four of the most representative timing synchronization algorithms, one specically designed for IEEE 802.11a WLANs and three other algorithms designed for general OFDM frame synchronization.
5

Channel, spectrum, and waveform awareness in OFDM-based cognitive radio systems

Yücek, Tevfik 01 January 2007 (has links)
The radio spectrum is becoming increasingly congested everyday with emerging technologies and with the increasing number of wireless devices. Considering the limited bandwidth availability, accommodating the demand for higher capacity and data rates is a challenging task, requiring innovative technologies that can offer new ways of exploiting the available radio spectrum. Cognitive radio arises to be a tempting solution to the spectral crowding problem by introducing the notion of opportunistic spectrum usage. Because of its attractive features, orthogonal frequency division multiplexing (OFDM) has been successfully used in numerous wireless standards and technologies. We believe that OFDM will play an important role in realizing the cognitive radio concept as well by providing a proven, scalable, and adaptive technology for air interface. The goal of this dissertation is to identify and address some of the challenges that arise from the introduction of cognitive radio. Specifically, we propose methods for obtaining awareness about channel, spectrum, and waveform in OFDM-based cognitive radio systems in this dissertation. Parameter estimation for enabling adaptation, spectrum sensing, and OFDM system identification are the three main topics discussed. OFDM technique is investigated as a candidate for cognitive radio systems. Cognitive radio features and requirements are discussed in detail, and OFDM's ability to satisfy these requirements is explained. In addition, we identify the challenges that arise from employing OFDM technology in cognitive radio. Algorithms for estimating various channel related parameters are presented. These parameters are vital for enabling adaptive system design, which is a key requirement for cognitive radio. We develop methods for estimating root-mean-square (RMS) delay spread, Doppler spread, and noise variance. The spectrum opportunity and spectrum sensing concepts are re-evaluated by considering different dimensions of the spectrum which is known as multi-dimensional spectrum space. Spectrum sensing problem in a multi-dimensional space is addressed by developing a new sensing algorithm termed as partial match filtering (PMF). Cognitive radios are expected to recognize different wireless networks and have capability of communicating with them. Algorithms for identification of multi-carrier transmissions are developed. Within the same work, methods for blindly detecting transmission parameters of an OFDM based system are developed. Blind detection is also very helpful in reducing system signaling overhead in the case of adaptive transmission where transmission parameters are changed depending on the environmental characteristics or spectrum availability.
6

A Phase-Time Modulation Scheme for Peak-to-Average Power Mitigation in Multi-Carrier Wireless Transmission

Spalding, David Ian January 2006 (has links)
An explosive growth in demand for broadband mobile wireless services is currently being fuelled by cellular telephone users who, encouraged by service providers, are no longer content with voice transmission only but are demanding real-time video services, including multi-user, interactive games and 'movie' programmes. As these applications develop, expectations mount in other mobile user markets, especially the public safety arena, for comparable user features but with greater emphasis on reliability and robustness of the equipment and supporting network in adverse propagation conditions, remote locations and emergencies. These applications all have in common the requirements for efficient use of wireless bandwidth and of battery power, as well as seamless operation when moving, sometimes at high vehicle speeds, from one type of environment to another in a multi-user scenario. Orthogonal frequency-division multiplexed (OFDM) signals have been found to compare favourably with other modulation systems in these applications, the multi-carrier format being more tolerant of delay spread. It has been used in both code-division (MC-CDMA) and frequency-division (OFDMA) multi-user schemes, the latter having the advantage of maintaining orthogonality among users in fading-signal environments, with consequent simplification of signal processing. The major drawback of OFDM has been the high peak-to-average power ratio (PAPR) that is characteristic of signals with multiple sub-carriers. A result of this is that the transmitter requires a linear power amplifier (PA) that generally has to be 'backed off' to accommodate the high PAPR. Additional back-off is required to achieve linearity, as well as sometimes-complex linearisation circuitry. The power usage and cost of such a transmitter is more acceptable in a base station, tending to limit the application of OFDM to downlinks. The potential application to hand-portable terminals has severe constraints of size, cost and battery life, exacerbated by the use of video-capable LCD displays, increasing motivation for the use of MIMO (multi-antenna) technology and the development of mobile ad-hoc networks, the latter being particularly applicable in the public safety arena. Previous efforts to ameliorate the PAPR problem have been principally directed at two areas, the reduction of signal PAPR, by block coding, clipping or other techniques, and methods of achieving PA linearisation with improved power efficiency. The first object of the present research was to establish, as far as practicable, the current state of the art in these areas, to set a performance baseline. The next step was to develop an improved transmitter modulation scheme that would not only be able to take advantage of any existing peak reduction methods but would transmit a signal that would be compatible with existing OFDM receivers. A novel modulation technique is now presented, termed Quadrature Phase-Time Modulation (QPTM), that has been found to meet the requirements for linearity, simplicity and low cost, whilst being able to take advantage of constant-envelope PA technology, with its attendant power efficiency. After final amplification, the signal is restored by a passive narrow-band filter to standard OFDM form, having both phase and amplitude modulation. The QPTM system of modulation relies on a dual baseband pulse-width modulation process, performed at a substantially-higher rate than the upper baseband frequency, followed by direct quadrature modulation of a carrier signal. The work undertaken has been in the nature of a feasibility study, commencing with the theoretical basis of the technique, from which a behavioural system model was designed and simulated. After the system was simulated successfully, in several forms, a model was designed for realisation with available high-frequency integrated circuits. From this design, prototypes were constructed and tested. The prototype circuit boards also included an experimental UHF Class-D PA circuit, excluding the output filter, to facilitate ongoing development of the PA and filter subsystem as a separate project. This type of PA was seen as a potential complement to the QPTM modulator, although the technology was at an early stage of development. The prototype PA has a novel push-pull arrangement of GaAs FETs that employs a broadside-coupled tapered-stripline balun instead of the usual transformer. Preliminary measurements were made on the PA using both a spectrum analyser and a newly-available 8GHz-bandwidth digital oscilloscope to confirm basic operating characteristics. The performance of the QPTM technique at frequencies needed for broadband operation is dependent on its practical implementation, which has therefore been a major focus. The inherent difficulties in realising a highly-linear 40MHz triangle-wave reference generator, with a precise ultra-high-speed comparator and modulator system, have been overcome with the chosen design techniques and attention to several critical aspects. The result has been the successful demonstration of QPTM as an efficient PA modulation technique that is equally applicable to either narrow-band, high-capacity UHF or broadband OFDM microwave systems.
7

Combating Impairments in Multi-carrier Systems: A Compressed Sensing Approach

Al-Shuhail, Shamael 05 1900 (has links)
Multi-carrier systems suffer from several impairments, and communication system engineers use powerful signal processing tools to combat these impairments and keep up with the capacity/rate demands. Compressed sensing (CS) is one such tool that allows recovering any sparse signal, requiring only a few measurements in a domain that is incoherent with the domain of sparsity. Almost all signals of interest have some degree of sparsity, and in this work we utilize the sparsity of impairments in orthogonal frequency division multiplexing (OFDM) and its variants (i.e., orthogonal frequency division multiplexing access (OFDMA) and single-carrier frequency-division multiple access (SC-FDMA)) to combat them using CS. We start with the problem of peak-to-average power ratio (PAPR) reduction in OFDM. OFDM signals suffer from high PAPR and clipping is the simplest PAPR reduction scheme. However, clipping introduces inband distortions that result in compromised performance and hence needs to be mitigated at the receiver. Due to the high PAPR nature of the OFDM signal, only a few instances are clipped, these clipping distortions can be recovered at the receiver by employing CS. We then extend the proposed clipping recovery scheme to an interleaved OFDMA system. Interleaved OFDMA presents a special structure that result in only self-inflicted clipping distortions. In this work, we prove that distortions do not spread over multiple users (while utilizing interleaved carrier assignment in OFDMA) and construct a CS system that recovers the clipping distortions on each user. Finally, we address the problem of narrowband interference (NBI) in SC-FDMA. Unlike OFDM and OFDMA systems, SC-FDMA does not suffer from high PAPR, but (as the data is encoded in time domain) is seriously vulnerable to information loss owing to NBI. Utilizing the sparse nature of NBI (in frequency domain) we combat its effect on SC-FDMA system by CS recovery.
8

Performance Analysis of MC-CDMA and CI/MC-CDMA Using Interference Cancellation Techniques

SHARMA, ANSHUL 19 September 2008 (has links)
No description available.
9

The Demonstration of SMSE Based Cognitive Radio in Mobile Environment via Software Defined Radio

Zhou, Ruolin 04 May 2012 (has links)
No description available.
10

Multi-Carrier Radar for Target Detection and Communications

Ellinger, John David 01 August 2016 (has links)
No description available.

Page generated in 0.0956 seconds