• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 14
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Timing Offset And Frequency Offset Estimation In An OFDM System

Prabhakar, A 07 1900 (has links) (PDF)
No description available.
22

Linear Power-Efficient RF Amplifier with Partial Positive Feedback

King, Matthew E. 01 June 2012 (has links) (PDF)
Over the last decade, the number of mobile wireless devices on the market has increased substantially. New “multi-carrier” modulation schemes, such as OFDM, WCDMA, and WiMAX, have been developed to accommodate the increasing number of wireless subscribers and the demand for faster data rates within the limited commercial frequency spectrum. These complex modulation schemes create signals with high peak-to-average power ratios (PAPR), exhibiting rapid changes in the signal magnitude. To accommodate these high-PAPR signals, RF power amplifiers in mobile devices must operate under backed-off gain conditions, resulting in poor power efficiency. Various efficiency-enhancement solutions have been realized for backed-off devices to combat this issue. A brief overview of one of the more extensively researched solutions, the Doherty amplifier, is given, and its inherent limitations are discussed. A recently proposed amplifier topology that provides the efficiency benefits of the Doherty amplifier, while overcoming some of the fundamental problems that plague the standard Doherty architecture, is investigated. A step-by-step design methodology is presented and confirmed by extensive simulation in Agilent ADS. A design example, tuned for maximum efficiency at peak output power, is implemented on a PCB and tested to verify the validity of the proposed circuit configuration.
23

Genetic algorithms for scheduling in multiuser MIMO wireless communication systems

Elliott, Robert C. 06 1900 (has links)
Multiple-input, multiple-output (MIMO) techniques have been proposed to meet the needs for higher data rates and lower delays in future wireless communication systems. The downlink capacity of multiuser MIMO systems is achieved when the system transmits to several users simultaneously. Frequently, many more users request service than the transmitter can simultaneously support. Thus, the transmitter requires a scheduling algorithm for the users, which must balance the goals of increasing throughput, reducing multiuser interference, lowering delays, ensuring fairness and quality of service (QoS), etc. In this thesis, we investigate the application of genetic algorithms (GAs) to perform scheduling in multiuser MIMO systems. GAs are a fast, suboptimal, low-complexity method of solving optimization problems, such as the maximization of a scheduling metric, and can handle arbitrary functions and QoS constraints. We first examine a system that transmits using capacity-achieving dirty paper coding (DPC). Our proposed GA structure both selects users and determines their encoding order for DPC, which affects the rates they receive. Our GA can also schedule users independently on different carriers of a multi-carrier system. We demonstrate that the GA performance is close to that of an optimal exhaustive search, but at a greatly reduced complexity. We further show that the GA convergence time can be significantly reduced by tuning the values of its parameters. While DPC is capacity-achieving, it is also very complex. Thus, we also investigate GA scheduling with two linear precoding schemes, block diagonalization and successive zero-forcing. We compare the complexity and performance of the GA with "greedy" scheduling algorithms, and find the GA is more complex, but performs better at higher signal-to-noise ratios (SNRs) and smaller user pool sizes. Both algorithms are near-optimal, yet much less complex than an exhaustive search. We also propose hybrid greedy-genetic algorithms to gain benefits from both types of algorithms. Lastly, we propose an improved method of optimizing the transmit covariance matrices for successive zero-forcing. Our algorithm significantly improves upon the performance of the existing method at medium to high SNRs, and, unlike the existing method, can maximize a weighted sum rate, which is important for fairness and QoS considerations. / Communications
24

Genetic algorithms for scheduling in multiuser MIMO wireless communication systems

Elliott, Robert C. Unknown Date
No description available.
25

Cross-layer protocol design and performance study for wideband wireless networks

Zhang, Ruonan 26 January 2010 (has links)
This thesis presents a cross-layer design and optimization for emerging wideband wireless networks supporting multimedia applications, considering the interactions of the wireless channel characteristics, the physical and link layer protocols, and the user-perceived Quality-of-Service (QoS). As wireless channels are error-prone and broadcast in nature, both the error control mechanisms and the Media Access Control (MAC) protocols are critical for resource utilization and QoS provisioning. How to analyze, design and optimize the high-rate wireless networks by considering the characteristics of the propagation channels and wideband communication technologies is an open, challenging issue. In this thesis, we consider two important wideband wireless systems, the Ultra-Wideband (UWB) and the Orthogonal Frequency-Division Multiplexing (OFDM) systems. First, we propose the packet-level channel models based on Finite State Markov Chains (FSMCs) for the two systems, which present the statistical properties of the propagation channels and the transmission systems. Second, by incorporating the proposed packet-level channel models, we develop analytical frameworks for quantifying the performance of the high-rate wireless networks, combining the channel fading, physical- and link-layer error-control mechanisms and MAC protocols. Third, to mitigate the impact of channel fading and impairments, a cross-layer joint error-control mechanism is proposed. In addition, we also investigate the impact of channel fading on the video streaming applications, and propose a simple admission control algorithm to ensure QoS. As considering the physical-layer characteristics is critical for ensuring QoS and efficiency of resource utilization, the packet-level channel models, cross-layer analytical frameworks, networking protocols and simulation methodologies proposed in this dissertation are essential for future proliferation of high-rate wireless networks.
26

Performance Analysis and PAPR Reduction Techniques for Filter-Bank based Multi-Carrier Systems with Non-Linear Power Amplifiers / Réduction du PAPR pour les systèmes utilisant la modulation FBMC/OQAM en présence d’amplificateur de puissance non linéaire

Bulusu, Sri Satish Krishna Chaitanya 29 April 2016 (has links)
Cette thèse a été effectuée dans le cadre du projet européen FP7 EMPHATIC (Enhanced Multicarrier Techniques for Professional Ad-Hoc and Cell-Based Communications). Plusieurs universités européennes et deux partenaires industriels: THALES Communications Security et CASSIDIAN ont participé à ce projet. L'objectif de ce projet est de développer, d'évaluer et de démontrer les apports des techniques multi-porteuses avancées, permettant une meilleure utilisation des bandes de fréquences radio existantes en fournissant des services de données à large bande, en coexistence avec les services traditionnels à bande étroite. Le projet porte sur l'application de radiocommunications mobiles professionnelles (Professional Mobile Radio : PMR). L'idée principale de ce projet est d'analyser la viabilité des systèmes à large bande utilisant des bancs de filtres (Filter Bank Multi Carrier : FBMC) conjointement avec une modulation d'amplitude en quadrature avec décalage (Offset Quadrature Amplitude Modulation : OQAM) dans le cadre de la 5ème génération (5G) des systèmes radio-mobiles. La modulation FBMC-OQAM se positionne comme candidate potentielle pour les futurs systèmes de communication. Cette modulation avancée offre de nombreux avantages tels que l’excellente localisation fréquentielle de sa densité spectrale de puissance (DSP), une robustesse au bruit de phase, aux décalages de fréquence ainsi qu’à l’asynchronisme entre les utilisateurs. Ces atouts, la rendent plus attrayant qu’OFDM pour l’application PMR, la radio cognitive (CR) et la 5G. Cependant, comme toute autre technique de modulation muti-porteuses, FBMC-OQAM souffre d’un facteur de crête ou d’un PAPR (pour Peak to Average Power Ratio) élevé. Lorsque l'amplificateur de puissance (AP), utilisé au niveau de l’émetteur, est opéré proche de sa zone non-linéaire (NL), ce qui est le cas dans la pratique, la bonne localisation fréquentielle de la DSP du système FBMC/OQAM est sérieusement compromise, en raison des remontées spectrales. Le premier objectif de cette thèse est de prédire l'étendue des remontées spectrales dans les systèmes FBMC-OQAM, introduites par la non-linéarité AP. Le deuxième objectif de ce travail est de proposer des techniques, pour les systèmes FBMC-OQAM, permettant la réduction du PAPR et la linéarisation de l’AP, afin d'atténuer les effets NL. L’utilisation des cumulants, a permis de prédire les remontées spectrales pour les signaux FBMC-OQAM après amplification NL. En outre, certains algorithmes de réduction du PAPR, basées sur des approches probabilistes et des techniques d'ajout de signaux, ont été proposés. La capacité de coexistence du système à large bande utilisant FBMC-OQAM avec des systèmes PMR à bande étroite en présence de PA a été analysée et il a été démontré que la coexistence est possible, à condition qu'il y est une bonne combinaison entre le recul du signal à l’entrée de l’AP (Input Back-Off : IBO), la réduction du PAPR et la linéarisation de l’AP. Enfin, une nouvelle technique de linéarisation de l’AP a été proposée pour le système FBMC-OQAM. / This thesis is part of the European FP7 EMPHATIC project (Enhanced Multicarrier Techniques for Professional Ad-Hoc and Cell-Based Communications) including various European universities and two main industrial partners: THALES Communications Security and CASSIDIAN. The EMPHATIC objective is to develop, evaluate and demonstrate the capability of enhanced multi-carrier techniques to make better use of the existing radio frequency bands in providing broadband data services in coexistence with narrowband legacy services. The project addresses the Professional Mobile Radio (PMR) application. The main idea is to analyze the viability of broadband systems based on filter-bank multi-carrier (FBMC) clubbed with o ffset quadrature amplitude modulation (OQAM) in the context of the future 5th Generation (5G) radio access technology (RAT). Increasingly, the FBMC-OQAM systems are gaining appeal in the probe for advanced multi-carrier modulation (MCM) waveforms for future communication systems. This advanced modulation scheme o ers numerous advantages such as excellent frequency localization in its power spectral density (PSD), a robustness to phase noise, frequency off sets and also to the multi-user asynchronism; making it more appealing than OFDM for PMR, cognitive radio (CR) and 5G RAT. However, like any other MCM technique, FBMC-OQAM suff ers from high PAPR. When the power amplifi er (PA) non-linearity, which is realistic radio-frequency impairment, is taken into account; the good frequency localization property is severely compromised, due to the spectral regrowth. The first objective of this PhD thesis is, to predict the extent of the spectral regrowth in FBMC-OQAM systems, due to the PA non-linearity. The second objective is to probe techniques for FBMC-OQAM systems, such as PAPR reduction and PA linearization, in order to mitigate the NL eff ects of PA. By cumulant analysis, spectral regrowth prediction has been done for FBMC-OQAM systems. Also, some algorithms for PAPR reduction, which are based on probabilistic approach and adding signal methods, have been proposed. The coexistence capability of the FBMC-OQAM based broadband system with the narrowband PMR systems in the presence of PA has been analyzed and it has been found that coexistence is possible, provided there is a symbiotic combination of PA Input Back-off (IBO), PAPR reduction and PA linearization. Finally, a novel PA linearization technique has been proposed for FBMC-OQAM.

Page generated in 0.1683 seconds