Spelling suggestions: "subject:"multimaterial"" "subject:"multiaterial""
41 |
Beitrag zum Thema VERBUNDWERKSTOFFE - WERKSTOFFVERBUNDE / Contribution on the topic COMPOSITE MATERIALS - MATERIAL COMPOUNDS : Status quo and research approachesNestler, Daisy Julia 15 April 2014 (has links) (PDF)
Vielschichtige Eigenschaftsprofile benötigen zunehmend moderne Verbundwerkstoffe und Werkstoffverbunde einschließlich der raschen Entfaltung neuer Fertigungstechnologien, da der monolithische Werkstoff bzw. ein einziger Werkstoff den heutigen komplexen Anforderungen nicht mehr genügen kann. Zukünftige Werkstoffsysteme haben wirtschaftlich eine Schlüsselposition und sind auf den Wachstumsmärkten von grundlegender Bedeutung. Gefragt sind maßgeschneiderte Leichtbauwerkstoffe (tailor-made composites) mit einem adaptierten Design. Dazu müssen Konzepte entwickelt werden, um die Kombination der Komponenten optimal zu gestalten. Das erfordert werkstoffspezifisches Wissen und Korrelationsvermögen sowie die Gestaltung komplexer Technologien, auch unter dem Aspekt der kontinuierlichen Massen- und Großserienfertigung (in-line, in-situ) und damit der Kostenreduzierung bislang teurer Verbundwerkstoffe und Werkstoffverbunde.
In der vorliegenden Arbeit wird in vergleichbarer und vergleichender Art und Weise sowie abstrahierter Form ein Bogen über das Gesamtgebiet der Verbundwerkstoffe und Werkstoffverbunde gespannt. Eine zusammenfassende Publikation über dieses noch sehr junge, aber bereits breit aufgestellte Wissenschaftsgebiet fehlt bislang. Das ist der Separierung der einzelnen, fest aufgeteilten Gruppierungen der Verbundwerkstoffe geschuldet. Querverbindungen werden selten hergestellt. Dieses Defizit in einem gewissen Maße auszugleichen, ist Ziel der Arbeit. Besondere Berücksichtigung finden Begriffsbestimmungen und Klassifikationen, Herstellungsverfahren und Eigenschaften der Werkstoffe. Es werden klare Strukturierungen und Übersichten herausgearbeitet. Zuordnungen von etablierten und neuen Technologien sollen zur Begriffsstabilität der Terminologien „Mischbauweise“ und „Hybrider Verbund“ beitragen. Zudem wird die Problematik „Recycling und Recyclingtechnologien“ diskutiert. Zusammenfassend werden Handlungsfelder zukünftiger Forschungs- und Entwicklungsprojekte spezifiziert. Aus dem Blickwinkel der verschiedenen Herstellungsrouten insbesondere für Halbzeuge und Bauteile und der dabei gewonnenen Erkenntnisse werden verallgemeinerte Konzepte für tailor-made Verbundwerkstoffe und Werkstoffverbunde vorgeschlagen („Stellschraubenschema“). Diese allgemeinen Werkstoffkonzepte werden auf eigene aktuelle Forschungsprojekte der Schwerpunktthemen Metallmatrix- und Polymermatrix-Verbundwerkstoffe sowie der hybriden Werkstoffverbunde appliziert. Forschungsfelder für zukünftige Projekte werden abgeleitet. Besonderes Augenmerk gilt den hybriden Verbunden als tragende Säule zukünftiger Entwicklungen im Leichtbau. Hier spielen in-line- und in-situ-Prozesse eine entscheidende Rolle für eine großseriennahe, kosteneffiziente und ressourcenschonende Produktion. / Complex property profiles require increasingly advanced composite materials and material compounds, including the rapid deployment of new production technologies, because the monolithic material or a single material can no longer satisfy today's complex requirements. Future material systems are fundamentally important to growth markets, in which they have an economically key position. Tailor-made lightweight materials (tailor-made composites) with an adapted design are needed. These concepts have to be developed to design the optimum combination of components. This requires material-specific knowledge and the ability to make correlations, as well as the design of complex technologies. Continuous large-scale and mass production (in-line, in-situ), thus reducing the costs of previously expensive composite materials and material compounds, is also necessary.
The present work spans the entire field of composite materials and material compounds in a comparable and comparative manner and abstract form. A summarizing publication on this still very new, but already broad-based scientific field is not yet available. The separation of the individual, firmly divided groups of the composite materials is the reason for this. Cross-connections are rarely made.
The objective of this work is to compensate to some extent for this deficiency. Special consideration is given to definitions and classifications, manufacturing processes and the properties of the materials. Clear structures and overviews are presented. Mapping established and new technologies will contribute to the stability of the terms "mixed material compounds" and "hybrid material compounds". In addition, the problem of recycling and recycling technologies is discussed. In summary, areas for future research and development projects will be specified. Generalized concepts for tailor-made composite materials and material compounds are proposed ("adjusting screw scheme") with an eye toward various production routes, especially for semi-finished products and components, and the associated findings. These general material concepts are applied to own current research projects pertaining to metal-matrix and polymer-matrix composites and hybrid material compounds. Research fields for future projects are extrapolated. Particular attention is paid to hybrid material compounds as the mainstay of future developments in lightweight construction. In-line and in-situ processes play a key role for large-scale, cost- and resource-efficient production.
|
42 |
Beitrag zum Thema VERBUNDWERKSTOFFE - WERKSTOFFVERBUNDE: Status quo und ForschungsansätzeNestler, Daisy Julia 04 November 2013 (has links)
Vielschichtige Eigenschaftsprofile benötigen zunehmend moderne Verbundwerkstoffe und Werkstoffverbunde einschließlich der raschen Entfaltung neuer Fertigungstechnologien, da der monolithische Werkstoff bzw. ein einziger Werkstoff den heutigen komplexen Anforderungen nicht mehr genügen kann. Zukünftige Werkstoffsysteme haben wirtschaftlich eine Schlüsselposition und sind auf den Wachstumsmärkten von grundlegender Bedeutung. Gefragt sind maßgeschneiderte Leichtbauwerkstoffe (tailor-made composites) mit einem adaptierten Design. Dazu müssen Konzepte entwickelt werden, um die Kombination der Komponenten optimal zu gestalten. Das erfordert werkstoffspezifisches Wissen und Korrelationsvermögen sowie die Gestaltung komplexer Technologien, auch unter dem Aspekt der kontinuierlichen Massen- und Großserienfertigung (in-line, in-situ) und damit der Kostenreduzierung bislang teurer Verbundwerkstoffe und Werkstoffverbunde.
In der vorliegenden Arbeit wird in vergleichbarer und vergleichender Art und Weise sowie abstrahierter Form ein Bogen über das Gesamtgebiet der Verbundwerkstoffe und Werkstoffverbunde gespannt. Eine zusammenfassende Publikation über dieses noch sehr junge, aber bereits breit aufgestellte Wissenschaftsgebiet fehlt bislang. Das ist der Separierung der einzelnen, fest aufgeteilten Gruppierungen der Verbundwerkstoffe geschuldet. Querverbindungen werden selten hergestellt. Dieses Defizit in einem gewissen Maße auszugleichen, ist Ziel der Arbeit. Besondere Berücksichtigung finden Begriffsbestimmungen und Klassifikationen, Herstellungsverfahren und Eigenschaften der Werkstoffe. Es werden klare Strukturierungen und Übersichten herausgearbeitet. Zuordnungen von etablierten und neuen Technologien sollen zur Begriffsstabilität der Terminologien „Mischbauweise“ und „Hybrider Verbund“ beitragen. Zudem wird die Problematik „Recycling und Recyclingtechnologien“ diskutiert. Zusammenfassend werden Handlungsfelder zukünftiger Forschungs- und Entwicklungsprojekte spezifiziert. Aus dem Blickwinkel der verschiedenen Herstellungsrouten insbesondere für Halbzeuge und Bauteile und der dabei gewonnenen Erkenntnisse werden verallgemeinerte Konzepte für tailor-made Verbundwerkstoffe und Werkstoffverbunde vorgeschlagen („Stellschraubenschema“). Diese allgemeinen Werkstoffkonzepte werden auf eigene aktuelle Forschungsprojekte der Schwerpunktthemen Metallmatrix- und Polymermatrix-Verbundwerkstoffe sowie der hybriden Werkstoffverbunde appliziert. Forschungsfelder für zukünftige Projekte werden abgeleitet. Besonderes Augenmerk gilt den hybriden Verbunden als tragende Säule zukünftiger Entwicklungen im Leichtbau. Hier spielen in-line- und in-situ-Prozesse eine entscheidende Rolle für eine großseriennahe, kosteneffiziente und ressourcenschonende Produktion. / Complex property profiles require increasingly advanced composite materials and material compounds, including the rapid deployment of new production technologies, because the monolithic material or a single material can no longer satisfy today's complex requirements. Future material systems are fundamentally important to growth markets, in which they have an economically key position. Tailor-made lightweight materials (tailor-made composites) with an adapted design are needed. These concepts have to be developed to design the optimum combination of components. This requires material-specific knowledge and the ability to make correlations, as well as the design of complex technologies. Continuous large-scale and mass production (in-line, in-situ), thus reducing the costs of previously expensive composite materials and material compounds, is also necessary.
The present work spans the entire field of composite materials and material compounds in a comparable and comparative manner and abstract form. A summarizing publication on this still very new, but already broad-based scientific field is not yet available. The separation of the individual, firmly divided groups of the composite materials is the reason for this. Cross-connections are rarely made.
The objective of this work is to compensate to some extent for this deficiency. Special consideration is given to definitions and classifications, manufacturing processes and the properties of the materials. Clear structures and overviews are presented. Mapping established and new technologies will contribute to the stability of the terms "mixed material compounds" and "hybrid material compounds". In addition, the problem of recycling and recycling technologies is discussed. In summary, areas for future research and development projects will be specified. Generalized concepts for tailor-made composite materials and material compounds are proposed ("adjusting screw scheme") with an eye toward various production routes, especially for semi-finished products and components, and the associated findings. These general material concepts are applied to own current research projects pertaining to metal-matrix and polymer-matrix composites and hybrid material compounds. Research fields for future projects are extrapolated. Particular attention is paid to hybrid material compounds as the mainstay of future developments in lightweight construction. In-line and in-situ processes play a key role for large-scale, cost- and resource-efficient production.
|
43 |
Phenomena in material addition to laser generated melt poolsPrasad, Himani Siva January 2019 (has links)
No description available.
|
44 |
Deformačně-napěťová analýza tenkostěnné skříně vystavené rázovému zatížení od výbuchu / Stress-strain analysis of the thin wall structure subjected to impact loadTatalák, Adam January 2016 (has links)
This master thesis deals with stress-strain analysis of simplified model of the thin wall transformer case subjected to impact load of electrical blast. Electrical blast is replaced by chemical blast (detonation of high explosive). The problem is solved using computational modeling utilizing the Finite Element Method (FEM) and LS-DYNA solver. After the introduction where detonation and shock wave propagation is explained the analytical approach is presented. This approach serves to results verification. In the next chapter is conducted research of applicable methods from which ALE method is chosen. In preliminary study is performed the mesh size analysis that is focused on finding the size of element which is both computational effective and gives accurate results. Next the infulence of input conditions (shape, location and parametres of high explosive, location of detonation point, boundary conditions) on distribution and time progress of pressure is investigated. Then influence of the opening on upper side of the case on overall pressure redistribution and strain and stress of the case is analysed. The stress-strain analysis of the case´s door which are connected to case by various types of contact models is performed as well as stiffness analysis of these types of contact.
|
45 |
Potential and application fields of lightweight hydraulic components in multi-material designUlbricht, Andreas, Gude, Maik, Barfuß, Daniel, Birke, Michael, Schwaar, Andree, Czulak, Andrzej January 2016 (has links)
Hydraulic systems are used in many fields of applications for different functions like energy storage in hybrid systems. Generally the mass of hydraulic systems plays a key role especially for mobile hydraulics (construction machines, trucks, cars) and hydraulic aircraft systems. The main product properties like energy efficiency or payload can be improved by reducing the mass. In this connection carbon fiber reinforced plastics (CFRP) with their superior specific strength and stiffness open up new chances to acquire new lightweight potentials compared to metallic components. However, complex quality control and failure identification slow down the substitution of metals by fiber-reinforced plastics (FRP). But the lower manufacturing temperatures of FRP compared to metals allow the integration of sensors within FRP-components. These sensors then can be advantageously used for many functions like quality control during the manufacturing process or structural health monitoring (SHM) for failure detection during their life cycle. Thus, lightweight hydraulic components made of composite materials as well as sensor integration in composite components are a main fields of research and development at the Institute of Lightweight Engineering and Polymer Technology (ILK) of the TU Dresden as well as at the Leichtbau-Zentrum Sachsen GmbH (LZS).
|
46 |
Investigating the Ability to Preheat and Ignite Energetic Materials Using Electrically Conductive MaterialsMarlon D Walls Jr. (9148682) 29 July 2020 (has links)
<div>The work discussed in this document seeks to integrate conductive additives with energetic material systems to offer an alternative source of ignition for the energetic material. By utilizing the conductive properties of the additives, ohmic heating may serve as a method for preheating and igniting an energetic material. This would allow for controlled ignition of the energetic material without the use of a traditional ignition source, and could also result in easier system fabrication.</div><div>For ohmic heating to be a viable method of preheating or igniting these conductive energetic materials, there cannot be significant impact on the energetic properties of the energetic materials. Various mass solids loadings of graphene nanoplatelets (GNPs) were mixed with a reactive mixture of aluminum (Al)/polyvinylidene fluoride (PVDF) to test if ohmic heating ignition was feasible and to inspect the impact that these loadings had on the energetic properties of the Al/PVDF. Results showed that while ohmic heating was a plausible method for igniting the conductive energetic samples, the addition of GNPs degraded the energetic properties of the Al/PVDF. The severity of this degradation was minimized at lower solids loadings of GNPs, but this consequently resulted in larger voltage input requirements to ignite the conductive energetic material. This was attributable to the decreased conductivities of the samples at lower solids loading of GNPs.</div><div>In hopes of conserving the energetic properties of the Al/PVDF while integrating the conductive additives, additive manufacturing techniques, more specifically fused filament fabrication, was used to print two distinct materials, Al/PVDF and a conductive composite, into singular parts. A CraftBot 3 was used to selectively deposit Conductive Graphene PLA (Black Magic) filament with a reactive filament comprised of a PVDF binder with 20% mass solids loadings of aluminum. Various amounts of voltage were applied to these conductive energetic samples to quantify the time to ignition of the Al/PVDF as the applied voltage increased. A negative correlation was discovered between the applied voltage and time to ignition. This result was imperative for demonstrating that the reaction rate could be influenced with the application of higher applied voltages.</div><div>Fused filament fabrication was also used to demonstrate the scalability of the dual printed conductive energetic materials. A flexural test specimen made of the Al/PVDF was printed with an embedded strain gauge made of the Black Magic filament. This printed strain gauge was tested for dual purposes: as an igniter and as a strain sensor, demonstrating the multi-functional use of integrating conductive additives with energetic materials.</div><div>In all, the experiments in this document lay a foundation for utilizing conductive additives with energetic materials to offer an alternative form of ignition. Going forward, ohmic heating ignition may serve as a replacement to current, outdated methods of ignition for heat sensitive energetic materials.</div>
|
47 |
Functionally Graded SS 316L to Ni-Based Structures Produced by 3D Plasma Metal DepositionRodriguez, Johnnatan, Hoefer, Kevin, Haelsig, Andre, Mayr, Peter 01 August 2019 (has links)
In this investigation, the fabrication of functionally graded structures of SS316L to Ni-based alloys were studied, using the novel technique 3D plasma metal deposition. Two Ni-based alloys were used, a heat resistance alloy Ni80-20 and the solid-solution strengthened Ni625. Different configurations were analyzed, for the Ni80-20 a hard transition and a smooth transition with a region of 50% SS316L/50% Ni80-20. Regarding the structures with Ni625, a smooth transition configuration and variations in the heat input were applied. The effect of the process parameters on the geometry of the structures and the microstructures was studied. Microstructure examinations were carried out using optical and scanning electron microscopy. In addition, microhardness analysis were made on the interfaces. In general, the smooth transition of both systems showed a gradual change in the properties. The microstructural results for the SS316L (both systems) showed an austenite matrix with δ-phase. For the mixed zone and the Ni80-20 an austenite (γ) matrix with some M7C3 precipitates and laves phase were recognized. The as-built Ni625 microstructure was composed of an austenite (γ) matrix with secondary phases laves and δ-Ni3Nb, and precipitates M7C3. The mixed zone exhibited the same phases but with changes in the morphology.
|
48 |
Structural responses due to underwater detonations : Validation of explosion modelling methods using LS-DYNABlomgren, Gustav, Carlsson, Ebba January 2023 (has links)
Modelling the full event of an underwater explosion (UNDEX) is complex and requires advanced modelling methods in order to achieve accurate responses. The process of an UNDEX includes a series of events that has to be considered. When a detonation is initiated, a shock-wave propagates and the rest products from the explosive material creates a gaseous bubble with high pressure which pulsates and impacts the surroundings. Reflections of the initial shock-wave can also appear if it hits the sea floor, water surface or other obstacles. There are different approaches how to numerically model the impact of an UNDEX on a structure, some with analytical approaches without a water domain and others where a water domain has to be modelled. This master’s thesis focuses on two modelling methods that are available in the finite element software LS-DYNA. The simpler method is called Sub-Sea Analysis (SSA) and does not require a water domain, thus it can be beneficial to use in an early design stage, or when only approximated responses are desired. To increase the accuracy, a more complex method called S-ALE can be used. By implementing this method, the full process of an UNDEX can be studied since both the fluid domain and explosive material are meshed. These methods are studied separately together with a combination of them. Another important aspect to be considered is that oscillations of a structure submerged in water differs from the behavior it has in air. Depending on the numerical method used, the impact of the water can be included. Natural frequencies of structures submerged in water are studied, how it changes and how the methods takes this into account. To verify the numerical models, experiments were executed with a cylindrical test object where the distance and weight of charge were altered through out the test series. It was found that multiple aspects affects the results from the experiments, that are not captured in the numerical models. These aspects have for instance to do with reflections, how accurate the test object is modelled and the damping effects of the water. It is concluded that the numerical models are sensitive when small charges and fragile structures are studied. High frequency oscillations were not triggered in the experiment but found for both methods. It should be further investigated if the methods are more accurate for larger charges and stronger structures. Experiments with larger water domain would also be beneficial to reduce effects from reflections, as well as a more accurate model of the cylinder in the simulations.
|
49 |
Evaluation of different crosslinking methods in altering the properties of extrusion-printed chitosan-basedmulti-material hydrogel compositesLiu, Suihong, Zhang, Haiguang, Ahlfeld, Tilman, Kilian, David, Liu, Yakui, Gelinsky, Michael, Hu, Qingxi 30 May 2024 (has links)
Three-dimensional printing technologies exhibit tremendous potential in the advancing fields of tissue engineering and regenerative medicine due to the precise spatial control over depositing the biomaterial. Despite their widespread utilization and numerous advantages, the development of suitable novel biomaterials for extrusion-based 3D printing of scaffolds that support cell attachment, proliferation, and vascularization remains a challenge. Multi-material composite hydrogels present incredible potential in this field. Thus, in this work, a multi-material composite hydrogel with a promising formulation of chitosan/gelatin functionalized with egg white was developed, which provides good printability and shape fidelity. In addition, a series of comparative analyses of different crosslinking agents and processes based on tripolyphosphate (TPP), genipin (GP), and glutaraldehyde (GTA) were investigated and compared to select the ideal crosslinking strategy to enhance the physicochemical and biological properties of the fabricated scaffolds. All of the results indicate that the composite hydrogel and the resulting scaffolds utilizing TPP crosslinking have great potential in tissue engineering, especially for supporting neo-vessel growth into the scaffold and promoting angiogenesis within engineered tissues.
|
Page generated in 0.3678 seconds