• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic modelling and control of robotic manipulators with an investigation of evolutionary computation methods

Swain, Anjan Kumar January 2001 (has links)
No description available.
2

Algorithmic Study on Prediction with Expert Advice : Study of 3 novel paradigms with Grouped Experts

Cayuela Rafols, Marc January 2018 (has links)
The main work for this thesis has been a thorough study of the novel Prediction with Partially Monitored Grouped Expert Advice and Side Information paradigm. This is newly proposed in this thesis, and it extends the widely studied Prediction with Expert Advice paradigm. The extension is based on two assumptions and one restriction that modify the original problem. The first assumption, Grouped, presumes that the experts are structured into groups. The second assumption, Side Information, introduces additional information that can be used to timely relate predictions with groups. Finally, the restriction, Partially Monitored, imposes that the groups’ predictions are only known for one group at a time. The study of this paradigm includes the design of a complete prediction algorithm, the proof of a theoretical bound of the worse-case cumulative regret for such algorithm, and an experimental evaluation of the algorithm (proving the existence of cases where this paradigm outperforms Prediction with Expert Advice). Furthermore, since the development of the algorithm is constructive, it allows to easily build two additional prediction algorithms for the Prediction with Grouped Expert Advice and Prediction with Grouped Expert Advice and Side Information paradigms. Therefore, this thesis presents three novel prediction algorithms, with corresponding regret bounds, and a comparative experimental evaluation including the original Prediction with Expert Advice paradigm. / Huvudarbetet för den här avhandlingen har varit en grundlig studie av den nya Prediction with Partially Monitored Grouped Expert Advice and Side Information paradigmet. Detta är nyligen föreslagit i denna avhandling, och det utökar det brett studerade Prediction with Expert Advice paradigmet. Förlängningen baseras på två antaganden och en begränsning som ändrar det ursprungliga problemet. Det första antagandet, Grouped, förutsätter att experterna är inbyggda i grupper. Det andra antagandet, Side Information, introducerar ytterligare information som kan användas för att i tid relatera förutsägelser med grupper. Slutligen innebär begränsningen, Partially Monitored, att gruppens förutsägelser endast är kända för en grupp i taget. Studien av detta paradigm innefattar utformningen av en komplett förutsägelsesalgoritm, beviset på en teoretisk bindning till det sämre fallet kumulativa ånger för en sådan algoritm och en experimentell utvärdering av algoritmen (bevisar förekomsten av fall där detta paradigm överträffar Prediction with Expert Advice). Eftersom algoritmens utveckling är konstruktiv tillåter den dessutom att enkelt bygga två ytterligare prediksionsalgoritmer för Prediction with Grouped Expert Advice och Prediction with Grouped Expert Advice and Side Information paradigmer. Därför presenterar denna avhandling tre nya prediktionsalgoritmer med motsvarande ångergränser och en jämförande experimentell utvärdering inklusive det ursprungliga Prediction with Expert Advice paradigmet.
3

Coordinated, Multi-Arm Manipulation with Soft Robots

Kraus, Dustan Paul 01 October 2018 (has links)
Soft lightweight robots provide an inherently safe solution to using robots in unmodeled environments by maintaining safety without increasing cost through expensive sensors. Unfortunately, many practical problems still need to be addressed before soft robots can become useful in real world tasks. Unlike traditional robots, soft robot geometry is not constant but can change with deflation and reinflation. Small errors in a robot's kinematic model can result in large errors in pose estimation of the end effector. This error, coupled with the inherent compliance of soft robots and the difficulty of soft robot joint angle sensing, makes it very challenging to accurately control the end effector of a soft robot in task space. However, this inherent compliance means that soft robots lend themselves nicely to coordinated multi-arm manipulation tasks, as deviations in end effector pose do not result in large force buildup in the arms or in the object being manipulated. Coordinated, multi-arm manipulation with soft robots is the focus of this thesis. We first developed two tools enabling multi-arm manipulation with soft robots: (1) a hybrid servoing control scheme for task space control of soft robot arms, and (2) a general base placement optimization for the robot arms in a multi-arm manipulation task. Using these tools, we then developed and implemented a simple multi-arm control scheme. The hybrid servoing control scheme combines inverse kinematics, joint angle control, and task space servoing in order to reduce end effector pose error. We implemented this control scheme on two soft robots and demonstrated its effectiveness in task space control. Having developed a task space controller for soft robots, we then approached the problem of multi-arm manipulation. The placement of each arm for a multi-arm task is non-trivial. We developed an evolutionary optimization that finds the optimal arm base location for any number of user-defined arms in a user-defined task or workspace. We demonstrated the utility of this optimization in simulation, and then used it to determine the arm base locations for two arms in two real world coordinated multi-arm manipulation tasks. Finally, we developed a simple multi-arm control scheme for soft robots and demonstrated its effectiveness using one soft robot arm, and one rigid robot with low-impedance torque control. We placed each arm base in the pose determined by the base placement optimization, and then used the hybrid servoing controller in our multi-arm control scheme to manipulate an object through two desired trajectories.
4

Design of adaptive multi-arm multi-stage clinical trials

Ghosh, Pranab Kumar 28 February 2018 (has links)
Two-arm group sequential designs have been widely used for over forty years, especially for studies with mortality endpoints. The natural generalization of such designs to trials with multiple treatment arms and a common control (MAMS designs) has, however, been implemented rarely. While the statistical methodology for this extension is clear, the main limitation has been an efficient way to perform the computations. Past efforts were hampered by algorithms that were computationally explosive. With the increasing interest in adaptive designs, platform designs, and other innovative designs that involve multiple comparisons over multiple stages, the importance of MAMS designs is growing rapidly. This dissertation proposes a group sequential approach to design MAMS trial where the test statistic is the maximum of the cumulative score statistics for each pair-wise comparison, and is evaluated at each analysis time point with respect to efficacy and futility stopping boundaries while maintaining strong control of the family wise error rate (FWER). In this dissertation we start with a break-through algorithm that will enable us to compute MAMS boundaries rapidly. This algorithm will make MAMS design a practical reality. For designs with efficacy-only boundaries, the computational effort increases linearly with number of arms and number of stages. For designs with both efficacy and futility boundaries the computational effort doubles with successive increases in number of stages. Previous attempts to obtain MAMS boundaries were confined to smaller problems because their computational effort grew exponentially with number of arms and number of stages. We will next extend our proposed group sequential MAMS design to permit adaptive changes such as dropping treatment arms and increasing the sample size at each interim analysis time point. In order to control the FWER in the presence of these adaptations the early stopping boundaries must be re-computed by invoking the conditional error rate principle and the closed testing principle. This adaptive MAMS design is immensely useful in phase~2 and phase~3 settings. An alternative to the group sequential approach for MAMS design is the p-value combination approach. This approach has been in place for the last fifteen years.This alternative MAMS approach is based on combining independent p-values from the incremental data of each stage. Strong control of the FWER for this alternative approach is achieved by closed testing. We will compare the operating characteristics of the two approaches both analytically and empirically via simulation. In this dissertation we will demonstrate that the MAMS group sequential approach dominates the traditional p-value combination approach in terms of statistical power.
5

Trust Discounting in the Multi-Arm Trust Game

Collins, Michael 17 December 2020 (has links)
No description available.
6

Algorithmic and Ethical Aspects of Recommender Systems in e-Commerce

Paraschakis, Dimitris January 2018 (has links)
Recommender systems have become an integral part of virtually every e-commerce application on the web. These systems enable users to quickly discover relevant products, at the same time increasing business value. Over the past decades, recommender systems have been modeled using numerous machine learning techniques. However, the adoptability of these models by commercial applications remains unclear. We assess the receptiveness of the industrial sector to algorithmic contributions of the research community by surveying more than 30 e-commerce platforms, and experimenting with various recommenders on proprietary e-commerce datasets. Another overlooked but important factor that complicates the design and use of recommender systems is their ethical implications. We identify and summarize these issues in our ethical recommendation framework, which also enables users to control sensitive moral aspects of recommendations via the proposed “ethical toolbox”. The feasibility of this tool is supported by the results of our user study. Because of moral implications associated with user profiling, we investigate algorithms capable of generating user-agnostic recommendations. We propose an ensemble learning scheme based on Thompson Sampling bandit policy, which models arms as base recommendation functions. We show how to adapt this algorithm to realistic situations when neither arm availability nor reward stationarity is guaranteed.

Page generated in 0.0186 seconds