• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 9
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 13
  • 11
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modélisation multi-échelle et simulation du comportement thermo-hydro-mécanique du béton avec représentation explicite de la fissuration / Multi-scale modelling and simulation of the thermo-hydro-mechanical behavior of concrete with explicit representation of cracking

Tognevi, Amen 23 November 2012 (has links)
Les structures en béton des centrales nucléaires peuvent être soumises à des contraintes thermo- hydriques modérées, caractérisées par des températures de l’ordre de la centaine de degrés aussi bien en conditions de service qu’accidentelles. Ces contraintes peuvent être à l’origine de désordres importants notamment la fissuration qui a pour effet d’accélérer les transferts hydriques dans la structure. Dans le cadre de l’étude de la durabilité de ces structures, le modèle THMs a été développé au Laboratoire d’Etude du Comportement des Bétons et des Argiles (LECBA) du CEA Saclay pour simuler le comportement du béton face à des sollicitations couplées thermo-hydro-mécaniques. Dans cette thèse on s’est intéressé à l’amélioration dans le modèle THMs d’une part de l’estimation des paramètres mécaniques et hydromécaniques du matériau en conditions partiellement saturées et en présence de fissuration et d’autre part de la description de la fissuration. La première partie a été consacrée à la mise au point d’un modèle basé sur une description multi-échelle de la microstructure des matériaux cimentaires, en partant de l’échelle des principaux hydrates (portlandite, ettringite, C-S-H, etc.) jusqu’à l’échelle macroscopique du matériau fissuré. Les paramètres investigués sont obtenus à chaque échelle de la description par des techniques d’homogénéisation analytiques. Dans la seconde partie on s’est attaché à décrire numériquement de façon précise la fissuration notamment en termes d’ouverture, de localisation et de propagation. Pour cela une méthode de réanalyse éléments finis/éléments discrets a été proposée et validée sur différents cas-test de chargement mécanique. Enfin la procédure a été mise en œuvre dans le cas d’un mur chauffé et une méthode de recalcul de la perméabilité a été proposée permettant de montrer l’intérêt de la prise en compte de l’anisotropie du tenseur de perméabilité lorsqu’on s’intéresse à l’étude des transferts de masse dans une structure en béton fissurée. Mots clés : matériaux cimentaires, homogénéisation, modélisation multi-échelle, microfissures, éléments discrets, éléments finis, chargements thermo-hydro-mécaniques. / The concrete structures of nuclear power plants can be subjected to moderate thermo-hydric loadings characterized by temperatures of the order of hundred of degrees in service conditions as well as in accidental ones. These loadings can be at the origin of important disorders, in particular cracking which accelerate hydric transfers in the structure. In the framework of the study of durability of these structures, a coupled thermo-hydro-mechanical model denoted THMs has been developed at Laboratoire d’Etude du Comportement des Bétons et des Argiles (LECBA) of CEA Saclay in order to perform simulations of the concrete behavior submitted to such loadings. In this work, we focus on the improvement in the model THMs in one hand of the assessment of the mechanical and hydromechanical parameters of the unsaturated microcracked material and in the other hand of the description of cracking in terms of opening and propagation. The first part is devoted to the development of a model based on a multi-scale description of cement-based materials starting from the scale of the main hydrated products (portlandite, ettringite, C-S-H etc.) to the macroscopic scale of the cracked material. The investigated parameters are obtained at each scale of the description by applying analytical homogenization techniques. The second part concerns a fine numerical description of cracking. To this end, we choose to use combined finite element and discrete element methods. This procedure is presented and illustrated through a series of mechanical tests in order to show the feasibility of the method and to proceed to its validation. Finally, we apply the procedure to a heated wall and the proposed method for estimating the permeability shows the interest to take into account an anisotropic permeability tensor when dealing with mass transfers in cracked concrete structures. Keywords : cement-based materials, homogenization, multi-scale modelling, microcracks, discrete elements, finite elements, thermo-hydro-mechanical loadings.
22

Modélisation multi échelle des phénomènes de retrait et de fluage dans les matériaux cimentaires : approches numériques couplant les éléments finis et la méthode de Lattice-Boltzmann / multi-scale modelling of the shrinkage and creep phenomena of cementitious materials : a combined Finite Elements-Lattice Boltzmann-numerical approach

Adia, Jean-Luc 28 November 2017 (has links)
Dans les structures en béton précontraint, les phénomènes de fluage et de retrait tendent à réduire les efforts de précontrainte initialement prévus pour maintenir le béton dans un état minimisant les forces de traction et donc la fissuration. La compréhension et la prédiction de ces phénomènes par le biais de modèles sont donc primordiales pour la conception et la maintenance à long terme des ouvrages du génie civil tels que les enceintes de confinement des centrales nucléaires.L’objectif de cette thèse est d’élaborer un cadre de modélisation micromécanique pour décrire de manière unifiée le retrait et le fluage dans les matériaux cimentaires. Pour cela, l’étude se base sur l’échelle de la microstructure poreuse du gel de C-S-H où les mécanismes intrinsèques de ces déformations différées du béton opèrent. Une approche d’homogénéisation numérique modélisant ces phénomènes dans des microstructures poreuses à morphologies quelconques est développée. Une description explicite du réseau poreux ainsi que de la phase liquide de l’eau pendant les processus de séchage/humidification est prise en compte. Les mécanismes concernant lesdéformations différées dans la phase solide sont modélisés par la théorie de la microprécontrainte-solidification (MPS). Les simulations à l’échelle microscopique sont réalisées par une approche originale couplant la méthode de Lattice Boltzmann (LBM) et la méthode des éléments finis (FEM). La LBM est utilisée pour décrire la distribution du liquide capillaire à l’échelle du pore,tandis que la FEM est employée pour simuler la déformation du squelette solide sous l’action combinée de l’eau dans l’espace poreux et d’un chargement macroscopique.La démarche proposée permet, au travers des simulations, de mieux comprendre les mécanismes liés à la non saturation et aux effets capillaires dans les milieux poreux. En particulier, la prise en compte de morphologies réalistes de microstructures et des ménisques formés conduit à différents régimes de retrait/gonflement. Ainsi les effets de l’intensité de la pression capillaire,de la tension de surface et des surfaces de chargement sur la réponse élastique du squelette solide sont évalués. Enfin, nous proposons une extension des approches précédentes au cas d’un squelette viscoélastique se déformant sous les effets de la pression capillaire et des tensions de surface. A partir des observations numériques réalisées, nous proposons un modèle pour décrire le fluage et le retrait du gel de C-S-H de manière unifiée / In pre-stressed concrete structures, creep and shrinkage tend to reduce the pre-stress forces which are initially produced so as to maintain concrete in a state minimizing traction forces and then cracks. Understanding and predicting these phenomena through models are thus highly important for the design and durability of civil engineering structures, such as containment buildings in nuclear power plants.The objective of this thesis is to develop a micromechanical modeling framework to describe shrinkage and creep in cementitious materials in a unified manner. For this purpose, the study focuses on the scale of the porous structure of the C-S-H gel where the intrinsic mechanisms of delayed strains are active. A computational homogenization approach is developed to model these phenomena in porous structures with arbitrary morphologies. An explicit description of the porous network and of the liquid phase of water during the drying/humidification process is taken into account. The mechanisms related to delayed strains in the solid phase are modeled by the microprestress-solidification theory (MPS). The simulations at the microscale are conductedbased on an original approach coupling the Lattice Boltzmann method (LBM) and the finite element method (FEM). The LBM is used to describe the distribution of capillary water in the porous structure, whereas the FEM serves as modeling the strain of the solid skeleton under the capillary water effets and a macroscopic load.The proposed method allows, by means of the simulations, to better understand the mechanisms related to the capillary effects in the porous structure. More specifically, taking into account realistic morphologies of microstructures and of the formed menisci lead to different regimes of shrinkage/swelling. Then, the effects of capillary pressure intensity, of surface tension and of morphologies of capillary surfaces on the elastic response of the solid skeleton are evaluated. Finally, the above approaches are extended to the case of a viscoelastic solid deformed under the action of the capillary water. From numerical observations, we propose a model is proposed to describe the creep and shrinkage of C-S-H gel in a unified way
23

Multi-scale modelling of shell failure for periodic quasi-brittle materials

Mercatoris, Benoît 04 January 2010 (has links)
<p align="justify">In a context of restoration of historical masonry structures, it is crucial to properly estimate the residual strength and the potential structural failure modes in order to assess the safety of buildings. Due to its mesostructure and the quasi-brittle nature of its constituents, masonry presents preferential damage orientations, strongly localised failure modes and damage-induced anisotropy, which are complex to incorporate in structural computations. Furthermore, masonry structures are generally subjected to complex loading processes including both in-plane and out-of-plane loads which considerably influence the potential failure mechanisms. As a consequence, both the membrane and the flexural behaviours of masonry walls have to be taken into account for a proper estimation of the structural stability.</p><p><p align="justify">Macrosopic models used in structural computations are based on phenomenological laws including a set of parameters which characterises the average behaviour of the material. These parameters need to be identified through experimental tests, which can become costly due to the complexity of the behaviour particularly when cracks appear. The existing macroscopic models are consequently restricted to particular assumptions. Other models based on a detailed mesoscopic description are used to estimate the strength of masonry and its behaviour with failure. This is motivated by the fact that the behaviour of each constituent is a priori easier to identify than the global structural response. These mesoscopic models can however rapidly become unaffordable in terms of computational cost for the case of large-scale three-dimensional structures.</p><p><p align="justify">In order to keep the accuracy of the mesoscopic modelling with a more affordable computational effort for large-scale structures, a multi-scale framework using computational homogenisation is developed to extract the macroscopic constitutive material response from computations performed on a sample of the mesostructure, thereby allowing to bridge the gap between macroscopic and mesoscopic representations. Coarse graining methodologies for the failure of quasi-brittle heterogeneous materials have started to emerge for in-plane problems but remain largely unexplored for shell descriptions. The purpose of this study is to propose a new periodic homogenisation-based multi-scale approach for quasi-brittle thin shell failure.</p><p><p align="justify">For the numerical treatment of damage localisation at the structural scale, an embedded strong discontinuity approach is used to represent the collective behaviour of fine-scale cracks using average cohesive zones including mixed cracking modes and presenting evolving orientation related to fine-scale damage evolutions.</p><p><p align="justify">A first originality of this research work is the definition and analysis of a criterion based on the homogenisation of a fine-scale modelling to detect localisation in a shell description and determine its evolving orientation. Secondly, an enhanced continuous-discontinuous scale transition incorporating strong embedded discontinuities driven by the damaging mesostructure is proposed for the case of in-plane loaded structures. Finally, this continuous-discontinuous homogenisation scheme is extended to a shell description in order to model the localised behaviour of out-of-plane loaded structures. These multi-scale approaches for failure are applied on typical masonry wall tests and verified against three-dimensional full fine-scale computations in which all the bricks and the joints are discretised.</p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
24

Quantification des échanges nappe-rivière au sein de l’hydrosystème Seine par modélisation multi-échelle / Quantizing stream-aquifer fluxes at regional scale by multi-scale modelling of the Seine hydrosystem

Labarthe, Baptiste 29 March 2016 (has links)
Compte tenu de l’évolution démographique et climatique planétaire, la gestion de la ressource en eau constitue un défi majeur auquel la communauté internationale devra faire face au cours du XXIème siècle. A cet effet, l'identification de la continuité hydrique entre les eaux de surface et les eaux souterraines permet l'introduction de la notion de gestion intégrée de la ressource. L'application de ce principe de gestion au bassin de la Seine, à travers l'estimation des échanges nappe-rivière, est rendue possible par la mise en pratique du concept d'interface nappe-rivière emboitées au sein de travaux de modélisation. Pour cela une procédure de modélisation multi-échelles peut être mise en place. Elle vise à intégrer des informations locales au sein de modélisation à une échelle supérieure. Dans ce mémoire, une procédure de modélisation multi-échelles est mise en œuvre. Ce protocole de modélisation est initié par une estimation des flux d'eau régionaux au sein de l'hydrosystème Seine. La cohérence globale de ces flux est garantie par le développement d'une méthodologie de calibration de modèles couplés en deux étapes. Ensuite les informations locales, que sont les hétérogénéités de la plaine alluviale de la Bassée et de la représentation des interfaces nappe-rivière du réseau secondaire, sont intégrées au modèle régional par une procédure de modélisation emboitée et de changement d'échelle des paramètres hydrauliques. La mise en place de cette procédure a finalement permis l'estimation fine des échanges nappe-rivière sur la quasi-totalité (83%) du réseau hydrographique naturel du bassin de la Seine et ainsi de répondre aux recommandations de gestion intégrée de la ressource faites par la directive cadre sur l'eau. / Given the current climate and anthropogenic evolutions, water management becomes one of the greatest challenges of the 21st Century. For that purpose, by identifying hydraulic continuity between surface and subsurface water, the concept of integrated water management can be introduced. In this work this management concept is applied on the Seine basin by quantizing hydrological processes occuring at the nested stream-aquifer interface. The implementatin of the nested interface concept can bedone through multi-scale modeling. This modelling procedure, aimed at embody the local characteristics of the interfaces (such as structural or hydrodynamic heterogeneities) in large scale models. A multi-scale modelling procedures is applied to the regional Seine basin model (70000 km²) in order, to study the hydrodynamic behaviour of the Bassée alluvial plain, and to quantify the stream-aquifer exchanged fluxes at the basin scale. The modelling protocol is initiated with regionals fluxes estimation over Seine hydrosystem. Regional fluxes consistency are assured by a two-step calibration procedure of fully coupled models. Then, the local characteristics of the Bassée alluvial plain, are implemented in the regional model by nested modelling methodology associated with upscaling procedure of hydraulics properties. Finally, the multi-scale modelling procedure lead to quantify distributed stream-aquifer exchanged water fluxes over 83% of the natural river network of the Seine basin, and thus, achieve to answer the integrated water resources management recommandations of the water framework directive.
25

Modélisation mathématique multi-échelle des hétérogénéités structurelles en électrophysiologie cardiaque / Multiscale mathematical modelling of structural heterogeneities in cardiac electrophysiology

Davidović, Andjela 09 December 2016 (has links)
Dans cette thèse, nous avons abordé deux problèmes de modélisation mathématique pour la propagation des signaux électriques cardiaques : la propagation à l’échelle tissulaire en présence d’hétérogénéités et la propagation à l’échelle cellulaire avec des jonctions communicantes non linéaires. Inclusions diffusives. Le modèle standard utilisé en électrocardiologie est le modèle bidomaine. Il est déduit par homogénéisation des propriétés microscopiques du tissu. Pour cela, on suppose que les myocytes électriquement actifs sont uniformément répartis dans le coeur. Bien que ce soit une hypothèse raisonnable pour des coeurs sains, ce n’est plus vrai dans certains cas pathologiques où des changements importants dans la structure tissulaire se produisent. C’est le cas, par exemple des maladies cardiaques ischémiques, rhumatismales et inflammatoires, de l’hypertrophie ou de l’infarctus. Ces hétérogénéités tissulaires sont souvent prises en compte à l’aide d’un ajustement ad hoc des paramètres du modèle. Le premier objectif de cette thèse consistait à généraliser les équations du modèle bidomaine au cas des pathologies cardiaques structurelles.Nous avons supposé une alternance périodique d’éléments de tissus sains (modèle bidomaine) et modifiées (inclusions diffusives). La simulation numérique directe d’un tel modèle nécessite une discrétisation très fine, et entraîne un coût de calcul élevé. Pour éviter cela, nous avons construit un modèle homogénéisé à l’échelle macroscopique en utilisant une analyse à deux échelles. Nous avons retrouvé un modèle de type bidomaine avec des coefficients de conductivité modifiés, dits effectifs. En complément, nous avons effectué une vérification numérique de la convergence du modèle microscopique vers celui homogénéisé, dans une situation bidimensionnelle.Dans la deuxième partie, nous avons quantifié les effets de différentes formes d’inclusions diffusives sur les coefficients de conductivité effectifs et leur anisotropie en 2D et 3D. De plus, nous avons effectué des simulations sur des domaines représentant des morceaux de tissu 2D avec ces coefficients de conductivité modifiés. Nous avons observé des changements de la vitesse de propagation et de la forme du front de l’onde de dépolarisation. Dans la troisième partie, nous avons simulé le modèle homogénéisé en 3D, à partir d’images par résonance magnétique (IRM) à haute résolution d’un coeur de rat. Nous avons évalué les propriétés structurelles du tissu en utilisant des outils d’analyse d’image.Nous avons ensuite utilisés ces évaluations pour construire les paramètres dans le modèle homogénéisé. Jonctions communicantes non linéaires. Dans la dernière partie de cette thèse, nous avons étudié les effets du comportement non linéaires des jonctions communicantes sur la propagation du signal à l’échelle cellulaire. Dans les modèles existants, les jonctions communicantes sont supposées avoir un comportement linéaire, lorsqu’elles sont modélisées.Cependant les données provenant des expériences montrent que ceux-ci ont un comportement non linéaire dépendant du temps et de la différence de potentiel entre cellules voisines. D’abord, nous avons présenté un modèle non linéaire 0D du courant dans les jonctions communicantes. Ensuite, nous avons recalé le modèle sur les données expérimentales.Enfin, nous avons proposé un modèle mathématique 2D qui décrit l’interaction électrique des myocytes cardiaques à l’échelle cellulaire. Ce modèle utilise le courant dans les jonctions communicantes comme une liaison directe entre des cellules adjacentes. / In this thesis we addressed two problems in mathematical modelling of propagation of electrical signals in the heart: tissue scale propagation with presence of tissue heterogeneities and cell scale propagation with non-linear gap junctions. Diffusive inclusions. The standard model used in cardiac electrophysiology is the bidomain model. It is an averaged model derived from the microscopic properties of the tissue.The bidomain model assumes that the electrically active myocytes are present uniformly everywhere in the heart. While this is a reasonable assumption for healthy hearts, it fails insome pathological cases where significant changes in the tissue structure occur, for examplein ischaemic and rheumatic heart disease, inflammation, hypertrophy, or infarction. These tissue heterogeneities are often taken into account through an ad-hoc tuning of model parameters. The first aim of this thesis consisted in generalizing the bidomain equations to the case of structural heart diseases.We assumed a periodic alternation of healthy (bidomain model) and altered (diffusive inclusion) tissue patches. Such a model may be simulated directly, at the high computational cost of a very fine discretisation. Instead we derived a homogenized model at the macroscopic scale, using a rigorous two-scale analysis. We recovered a bidomain-type model with modified conductivity coefficients, and performed a 2D numerical verificationof the convergence of the microscopic model towards the homogenized one.In the second part we quantified the effects of different shapes and sizes of diffusive inclusions on the effective conductivity coefficients and their anisotropy ratios in 2D and3D. Additionally, we ran simulations on 2D patches of tissue with modified conductivity coefficients. We observed changes in the propagation velocity as well as in the shape of the depolarization wave-front.In the third part, based on high-resolution MR images of a rat heart we simulated 3D propagations with the homogenized model. Using image analysis software tools we assessed the structural properties of the tissue, that we used afterwards as parameters inthe homogenized model. Non-linear gap junctions. In the last part of this thesis, we studied the effects of nonlineargap junction channels on the signal propagation at the cell scale. In existing models, the gap junction channels, if modelled, are assumed to have a linear behaviour, while from experimental data we know that they have a time- and voltage-dependent non-linear behaviour. Firstly, we stated a non-linear 0D model for the gap junctional current, and secondly fitted the model to available experimental data. Finally, we proposed a 2D mathematical model that describes the electrical interaction of cardiac myocytes on the cell scale. It accounts for the gap junctional current as "the direct link" between the adjacent cells.

Page generated in 0.0987 seconds