• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • Tagged with
  • 11
  • 11
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

I[indice inférieur K1] et l'inhibition métabolique hétérogénéité dans la réponse des cellules sous-endocardiques et sous-épicardiques?

Rioux, Yann January 1997 (has links)
Le but de ce travail était d'étudier si la réponse à l'inhibition métabolique était la même dans des cellules cardiaques en provenance de différentes régions du ventricule, soit de la région sous-endocardique et de celle sous-épicardique. En deuxième lieu, nous voulions confirmer la participation de"l'inward rectifier" dans l'augmentation de la composante sortante du courant de fond en inhibition métabolique. Nous avons donc trouvé une hétérogénéité n'étant pas reliée à l'arrangement des cellules en couches. Le courant de"l'inward rectifier" participe à la réponse à l'inhibition métabolique avec le I[indice inférieur k-ATP]. L'augmentation de la composante sortante d'I[indice inférieur k1] contribue au raccourcissement du potentiel d'action en conditions de stress énergétique. Toutefois, l'impossibilité de retrouver les niveaux de courants initiaux au-delà de -50 mV, suggère que dans nos préparations, le courant chlore sensible à l'étirement pourrait être impliqué dans cette réponse. Des extrapolations en vue d'expliquer l'impact de ces résultats in vivo doivent être faites avec précaution, car les mécanismes y sont beaucoup plus complexes. --Résumé abrégé par UMI.
2

Modèles numériques personnalisés de la fibrillation auriculaire / Numerical patient-specific model of atrial-fibrillation

Gerard, Antoine 10 July 2019 (has links)
Les arythmies auriculaires constituent une pathologie majeure en cardiologie, et leur étude constitue un vaste sujet de recherche. Pour les étudier, de nombreux modèles mathématiques de la propagation du potentiel d'action dans les oreillettes ont été développés. La plupart de ces modèles génériques permettent de reproduire des séquences d'activations typiques des oreillettes. De tels modèles peuvent avoir un intérêt expérimental, voir clinique, par exemple dans l'aide à la localisation des foyers arythmiques ou encore dans l'analyse des échecs du traitement de ces arythmies. Néanmoins, pour atteindre ce but, il faut être capable de recaler au mieux le modèle, dans ses dimensions géométriques ou fonctionnelles, sur des données individuelles. L'assimilation de données, discipline mathématique dans laquelle nous cherchons à combiner de manière optimale théorie et observations, est alors un bon candidat à la personnalisation des modèles de la propagation du potentiel d'action. Dans cette thèse, nous proposons d'étudier différentes méthodes d'assimilation de données -- séquentielles et variationnelles -- dans le but de combiner les modèles de propagation avec des données électroanatomiques. Plus précisément, nous nous intéressons à deux applications possible de l'assimilation de données que sont l'estimation d'état et l'estimation de paramètres. Dans un premier temps, nous étudions un observateur d'état permettant de corriger la position du front de propagation simulé en se basant sur la position du front observé. Cet observateur est alors utilisé afin de compléter une carte d'activation obtenue lors d'une procédure clinique. Ensuite, ce même observateur est combiné à un filtre de Kalman d'ordre réduit afin d'estimer les paramètres de conductivités du modèle mathématique de propagation du potentiel d'action. Une étude de la stratégie d'estimation liée état-paramètre est ensuite réalisée pour voir comment la méthode se comporte face aux erreurs de modélisation. La méthode est ensuite testée sur un jeu de données acquis cliniquement. Puis, nous regardons du côté des méthodes d'assimilation de données variationnelles qui permettent l'estimation de paramètres spatialement distribués. Plusieurs problèmes de minimisation, permettant d'estimer un paramètre de conductivité distribué dans l'espace, sont alors introduits et analysés. Nous montrons alors que la discrétisation de ces problèmes de minimisation, dans le but d'obtenir des méthodes numériques de résolution, peut s'avérer complexe. Une méthode numérique est ensuite mise en place pour un des problèmes de minimisation étudié, et trois cas tests unidimensionnels sont analysés.Enfin, nous démontrons l'existence d'un minimum pour une des fonctions objectif étudiées en nous basant sur des résultats d'analyse fonctionnelle de la littérature. / Atrial arrhythmias are a major pathology in cardiology, and their study is alarge research topic. To study them, many mathematical models of the actionpotential propagation in atria have been developed. Most of those generic models can be used to reproduce typical activation sequences of the atria. Such models may have an experimental or even clinical interest, for example in helping the location of arrhythmic foci or in the analysis of treatment failures for these arrhythmias. Nevertheless, to achieve this goal, it isnecessary to be able to adjust the model at best, based on experimental orclinical data. Data assimilation, a mathematical discipline in which we seek to optimally combine theory and observations, is then a good candidate for the customization of action potential propagation models.In this thesis, we propose to study different data assimilation methods-- sequential and variational -- in order to adjust action potential propagation model on electroanatomical data. More precisely, we are interested in two possible applications of data assimilation: state estimation and parameter estimation.First, we study a state observer which is able to correct the simulatedpropagation front localization based on the observed front localization. Thisobserver is then used to complete an activation map obtained during a clinical procedure.Then, this observer is combined with a reduced order Kalman filterin order to estimate the conductivity parameters of the action potentialpropagation model. A study of the joint state-parameter estimationstrategy is then realized to see how the method behaves faced with modelingerrors. The method is then tested on a clinically acquired dataset.Then, we look at variational data assimilation methods that allow the estimation of spatially distributed parameters. Several minimization problems, allowing to estimate a conductivity parameter distributed in space, are then introduced and analyzed. We then show that the discretization of these minimization problems, in order to obtain numerical methods of resolution, can be complex. A numerical method is then implemented for one of the studied minimization problems, and three 1D test cases are analyzed.Finally, we demonstrate the existence of a minimum for one of the studiedobjective function based on functional analysis results from theliterature.
3

Analyse asymptotique en électrophysiologie cardiaque : applications à la modélisation et à l'assimilation de données / Asymptotic analysis in cardiac electrophysiology : applications in modeling and in data assimilation

Collin, Annabelle 06 October 2014 (has links)
Cette thèse est dédiée au développement d'outils mathématiques innovants améliorant la modélisation en électrophysiologie cardiaque.Une présentation du modèle bidomaine - un système réaction-diffusion - à domaine fixé est proposée en s'appuyant sur la littérature et une justification mathématique du processus d'homogénéisation (convergence «2-scale») est donnée. Enfin, une étude de l'impact des déformations mécaniques dans les lois de conservation avec la théorie des mélanges est faite.Comme les techniques d'imagerie ne fournissent globalement que des surfaces pour les oreillettes cardiaques dont l'épaisseur est très faible, une réduction dimensionnelle du modèle bidomaine dans une couche mince à une formulation posée sur la surface associée est étudiée. À l'aide de techniques développées pour les modèles de coques, une analyse asymptotique des termes de diffusion est faite sous des hypothèses de gradient d'anisotropie fort à travers l'épaisseur. Puis, une modélisation couplée du cœur - asymptotique pour les oreillettes et volumique pour les ventricules - permet la simulation d'électrocardiogramme complet. De plus, les méthodes asymptotiques sont utilisées pour obtenir des résultats de convergence forte pour les modèles de coque-3D.Enfin, afin de «personnaliser» les modèles, une méthode d'estimation est proposée. Les données médicales intégrées dans notre modèle - au moyen d'un filtre d'état de type Luenberger spécialement conçu - sont les cartes d'activation électrique. Ces problématiques apparaissent dans d'autres domaines où les modèles (réaction-diffusion) et les données (position du front) sont similaires, comme la propagation de feux ou la croissance tumorale. / This thesis aims at developing innovative mathematical tools to improve cardiac electrophysiological modeling. A detailed presentation of the bidomain model - a system of reaction-diffusion equations - with a fixed domain is given based on the literature and we mathematically justify the homogenization process using the 2-scale convergence. Then, a study of the impact of the mechanical deformations in the conservation laws is performed using the mixture theory.As the atria walls are very thin and generally appear as thick surfaces in medical imaging, a dimensional reduction of the bidomain model in a thin domain to a surface-based formulation is studied. The challenge is crucial in terms of computational efficiency. Following similar strategies used in shell mechanical modeling, an asymptotic analysis of the diffusion terms is done with assumptions of strong anisotropy through the thickness, as in the atria. Simulations in 2D and 3D illustrate these results. Then, a complete modeling of the heart - with the asymptotic model for the atria and the volume model for the ventricles - allow the simulation of full electrocardiogram cycles. Furthermore, the asymptotic methods are used to obtain strong convergence results for the 3D-shell models.Finally, a specific data assimilation method is proposed in order to «personalize» the electrophysiological models. The medical data assimilated in the model - using a Luenberger-like state filter specially designed - are the maps of electrical activation. The proposed methods can be used in other application fields where models (reaction-diffusion) and data (front position) are very similar, as for fire propagation or tumor growth.
4

Reduced Order Models, Forward and Inverse Problems in Cardiac Electrophysiology / Modèles d'ordre réduit, problèmes directs et inverses en électrophysiologie cardiaque

Schenone, Elisa 28 November 2014 (has links)
Cette thèse de doctorat est consacrée à l'étude des problèmes directe et inverse en électrophysiologie cardiaque. Comme les équations qui décrivent l'activité électrique du coeur peuvent être très couteuses en temps de calcul, une attention particulière est apportée aux méthodes d'ordre réduit et à leur applications aux modèles de l'électrophysiologie.Dans un premier temps, nous introduisons les modèles mathématiques et numériques de l'électrophysiologie cardiaque. Ces modèles nous permettent de réaliser des simulations numériques que nous validons à l'aide de plusieurs critères qualitatifs et quantitatifs trouvés dans la littérature médicale. Comme notre modèle prend en compte les oreillettes et les ventricules, nous sommes capables de reproduire des cycles complets d'électrocardiogrammes (ECG) à la fois dans des conditions saines et dans des cas pathologiques.Ensuite, plusieurs méthodes d'ordre réduit sont étudiées pour la résolution des équations de l'électrophysiologie. La méthode Proper Orthogonal Decomposition (POD) est appliquée pour la discrétisation des équations de l'électrophysiologie dans plusieurs configurations, comme par exemple la simulation d'un infarctus du myocarde. De plus, cette méthode est utilisée pour résoudre quelques problèmes d'identification de paramètres comme localiser un infarctus à partir de mesures d'un électrocardiogramme ou simuler une courbe de restitution. Pour contourner les limitations de la POD, une nouvelle méthode basée sur des couples de Lax approchés (Approximated Lax Pairs, ALP) est utilisée. Cette méthode est appliquée aux problèmes directe et inverse. Pour finir, un nouvel algorithme, basé sur les méthodes ALP et l'interpolation empirique discrète, est proposé. Cette nouvelle approche améliore significativement l'efficacité de l'algorithme original ALP et nous permet de considérer des modèles plus complexes utilisés en électrophysiologie cardiaque. / This PhD thesis is dedicated to the investigation of the forward and the inverse problem of cardiac electrophysiology. Since the equations that describe the electrical activity of the heart can be very demanding from a computational point of view, a particular attention is paid to the reduced order methods and to their application to the electrophysiology models. First, we introduce the mathematical and numerical models of electrophysiology and we implement them to provide for simulations that are validated against various qualitative and quantitative criteria found in the medical literature. Since our model takes into account atria and ventricles, we are able to reproduce full cycle Electrocardiograms (ECG) in healthy configurations and also in the case of several pathologies. Then, several reduced order methods are investigated for the resolution of the electrophysiology equations. The Proper orthogonal Decomposition (POD) method is applied for the discretization of the electrophysiology equations in several configurations, as for instance the simulation of a myocardial infarction. Also, the method is used in order to solve some parameters identification problems such as the identification of an infarcted zone using the Electrocardiogram measures and for the efficient simulation of restitution curves. To circumvent some limitations of the POD method, a new reduced order method based on the Approximated Lax Pairs (ALP) is investigated. This method is applied to the forward and inverse problems. Finally, a new reduced order algorithm is proposed, based on the ALP and the Discrete Empirical Interpolation methods. This new approach significantly improves the efficiency of the original ALP algorithm and allow us to consider more complex models used in electrophysiology.
5

Régulation des canaux ioniques cardiaques par les acylcarnitines / Regulation of cardiac ion channel by acyl-carnitines

Ferro, Fabio 11 December 2012 (has links)
Plusieurs maladies entraînent soit une augmentation soit une diminution du taux des acides gras (AG) et de leurs dérivés circulants, notamment les acyl-carnitines (AC). Ce changement a été soupçonné comme étant la cause de importants dérangements électriques. Nous avons montré que les AC à chaine longue (LCAC) du côté extracellulaire modulent le canal hERG de façon spécifique, modulant sa amplitude de courant et sa cinétique. Aucun AC testé n’a eu d’effet en intracellulaire. La CAR et les MCAC n’ont eu aucun effet. Les AC ne modulent pas les courants IKS et IK1. Le canal Cav1.2 est modulé par C16-CAR et le C16 dans la lignée HEK293-ICaL et dans des cardiomyocytes de rat. En condition physiologique il existe donc un lien strict entre le métabolisme énergétique et activité électrique cardiaque qui entraine une modulation permanente du canal hERG par les LCAC. La régulation par les LCAC du canal hERG et peut être celle du canal ICaL, pourraient participer au dérangement électrique à l’origine du déclenchement de troubles du rythme cardiaque retrouvé dans certaines maladies. / Several diseases can cause either an increase or a decrease in the rate of fatty acids (FAs) and their derivatives circulating, including acyl-carnitines (AC). This change is suspected as being the cause of major cardiac electrical perturbations. We have shown that long-chain AC (LCAC) modulate specifically by the extracellular side the hERG channel, regulating its current amplitude and kinetics. All AC tested had no effect when applied intracellularly. Carnitine and medium chain AC had no effect on hERG. LCAC does not modulate IK1 and IKS. Cav1.2 channel is modulated by C16 and C16-CAR in line HEK293-ICaL and rat cardiomyocytes. In physiological conditions there exists a strict link between energy metabolism and cardiac electrical activity which causes a permanent modulation of hERG channel by the LCAC. Regulation by the LCAC of the hERG channel and maybe ICaL, could participate in the electrical disturbance causing the onset of cardiac arrhythmia found in certain diseases.
6

Applying computational approaches to the understanding of the consequences and opportunities of ion channel properties in atrial fibrillation

Aguilar, Martin 11 1900 (has links)
Cardiac arrhythmias are disorders of the electrical system of the heart and an often clinically-challenging group of disorders. Atrial fibrillation (AF) is the most common cardiac arrhythmia in the general population; it is associated with significant morbidity and mortality. Available antiarrhythmic drugs (AADs) for the treatment of AF are older molecules with sub- optimal efficacy and safety profiles. Recent advances in basic electrophysiology and the development of sophisticated mathematical modeling approaches could help in expanding our understanding of the basic mechanisms of AF and assist in the development of novel AF- selective AADs. The purpose of this thesis was to utilize computational approaches to the understanding of the consequences and opportunities of ion channel properties, with a special emphasis on AF. The cardiac action potential is the basic functional unit of the electrical system of the heart and is the manifestation of coordinated current fluxes through specialized proteins known as ion channels. Antiarrhythmic drugs act through modulation of ion channel properties. We hypothesized that mathematical modeling could be used to study and optimize the pharmacodynamic properties of AADs for the treatment of AF. We demonstrated that the pharmacodynamic properties (binding/unbinding characteristics) of a state-dependent Na+- channel blocker modulate the drug’s anti-/proarrhythmic actions with inactivated-state blockers being optimally AF-selective. The optimized drug’s selectivity for AF was the result of its rate- selectivity (stronger effects at fast vs slow cardiomyocyte activation rates) with relatively mild atrial-selective (stronger effects in atrial vs ventricular cardiomyocytes) actions. We found that the optimally AF-selective Na+-channel blocker had sub-optimal anti-AF efficacy, but that slightly less selective drugs had favorable AF-termination rates. We then sought to explore potential current-block combinations with synergistic AF- selective properties. Using mathematical modeling and laboratory experiments, we demonstrated that the combination of optimized state-dependent Na+-channel block and K+- channel block had synergistic effects, significantly augmenting AF termination rates for any level of AF-selectivity vs pure Na+-channel block. The mechanisms of these synergistic effects were found to be mediated by the functional interaction between the action potential prolonging- v effects of K+-channel block, the Na+-channel blocker’s voltage-dependent binding/unbinding properties and the Na+ channel’s inactivation characteristics, highlighting the non-linear nature of the cardiac action potential’s dynamics. Traditional K+ currents targeted by AADs have significant ventricular proarrhythmic liabilities. Using recent experimental observations, we updated the mathematic formulation for the inactivation dynamics of the ultra-rapid delayed-rectifier K+ current (IKur), an atrial-specific current. Using this model, we showed that, contrary to what had been proposed in the published literature, IKur rate-dependent properties are mediated by its activation properties with minimal contribution from inactivation, under physiological conditions. We also demonstrated that the contribution of IKur to action potential repolarization is preserved, or even increased, in the setting of electrical remodeling-induced IKur downregulation. Finally, we described the mechanisms of the forward rate-dependent of IKur block, mediated by functional non-linear interactions with the rapid delayed inward-rectifier K+ current (IKr), the only K+ current with such properties. Until recently, fibroblasts were considered to be electrically inactive. More recently, experimental work demonstrated the presence of functional ionic current on the fibroblast and possible cardiomyocyte-fibroblast coupling. Here, we described a novel kind of heart failure- induced electrical remodeling involving the fibroblasts ion channels. This was characterized by downregulation of the fibroblast voltage-dependent K+ current (IKv,fb) and upregulation of the fibroblast inward-rectifier K+ current (IKir,fb). We then implemented our experimental findings into a mathematical model of cardiomyocyte-fibroblast coupling and found fibroblast electrical remodeling to have significant effects on the cardiomyocyte’s electrophysiological properties. In a 2-dimension model of simulated AF, downregulation of IKv,fb had an antiarrhythmic effect whereas IKir,fb upregulation was found to be proarrhythmic. The studies presented here utilized mathematical modeling to study non-linear systems in cardiac electrophysiology to tackle questions that would have been difficult to approach with traditional laboratory-based experimentation. They also showcased how theoretical results can help orient and receive confirmation with subsequent experimental work or, conversely, novel experimental findings results be implemented into a mathematical model to investigate potential consequences. Mathematical modeling is a promising tool to help in studying the complex and vi non-linear effects of pharmacological modulation of ion channel properties and assist in the development of optimized antiarrhythmics for the treatment of AF, a major unmet need in clinical medicine. As models increase in sophistication to better represent the cardiomyocyte’s electrophysiology, they will almost certainly play an ever-growing role in expanding our understanding of the mechanisms of complex arrhythmias. / Les arythmies cardiaques représentent une famille de pathologies du système électrique cardiaque. La fibrillation auriculaire (FA), est l’arythmie cardiaque la plus fréquente dans la population générale et est associée à un fardeau de morbidité et mortalité cardiovasculaire important. Les médicaments antiarythmiques utilisées dans le traitement de la FA sont de vieilles molécules avec une efficacité sous-optimale et des effets secondaires importants. Les avancées récentes en électrophysiologie cardiaque fondamentale et le développement d’outils de modélisation mathématique ont le potentiel d’élargir notre compréhension des mécanismes pathophysiologiques en FA et contribuer au développement de nouveaux médicaments antiarythmiques optimisés pour le traitement de la FA. L’objectif global de cette thèse est d’utiliser les méthodes de modélisation mathématique pour étudier les conséquences et opportunités thérapeutiques de la modulation des canaux ioniques cardiaques, avec une emphase sur la FA. Le potentiel d’action cardiaque est l’unité fonctionnelle de base du système électrique cardiaque ; il est le résultat du flux coordonné de courants électriques à travers de protéines spécialisées, les canaux ioniques. Les molécules antiarythmiques agissent à travers la modulation des canaux ioniques cardiaques. Nous avons posé l’hypothèse que des modèles mathématiques pourraient être utilisés pour étudier et optimiser les propriétés pharmacodynamiques d’un médicament antiarythmique pour le traitement de la FA. Nous avons démontré que les propriétés pharmacodynamiques (propriétés de liage et déliage) d’un bloqueur des canaux Na+ état-dépendant modulent les effets anti- et pro-arythmiques de la molécule ; un bloqueur Na+ sélectif pour l’état inactivé du canal serait maximalement FA-sélectif. Cette sélectivité pour la FA est la conséquence de la sélectivité pour la fréquence (effet thérapeutique plus important à des fréquences d’activation du cardiomyocyte élevées vs basses) avec une contribution relativement faible de la sélectivité auriculaire (effet thérapeutique plus important sur les cardiomyocytes auriculaires vs ventriculaires). Par la suite, nous avons exploré des combinaisons de bloqueurs ioniques ayant des propriétés anti-FA synergiques. En utilisant des modèles mathématiques et des expériences en laboratoire, nous avons démontré que la combinaison d’un bloqueur des canaux Na+ et d’un iii bloqueur des canaux K+ a des effets synergiques, augmentant de façon importante l’efficacité anti-FA pour un même degré de sélectivité vs un bloqueur des canaux Na+ seul. Le mécanisme de synergie a été élucidé et consiste d’effets fonctionnels médiés par l’interaction du prolongement de la durée du potentiel d’action causé par le bloque des canaux K+, les propriétés voltage-dépendantes du liage et déliage du bloqueur des canaux Na+ ainsi que des propriétés d’inactivation des canaux Na+, démontrant la nature hautement non-linéaire des dynamiques du potentiel d’action cardiaque. Les courants K+ ciblés par les médicaments antiarythmiques ont des effets proarythmiques ventriculaires importants. En utilisant des données expérimentales récentes, nous avons proposé une formulation mise à jour des dynamiques d’inactivation du courant K+ IKur, un courant auriculo-sélectif. En utilisant ce modèle, nous avons démontré que, contrairement à ce qui avait été précédemment proposé, les propriétés fréquence-dépendantes du courant IKur dépendent de ses caractéristiques d’activation avec une contribution négligeable de ses propriétés d’inactivation, sous conditions physiologiques normales. Nous avons également démontré que la contribution de IKur à la repolarisation du potentiel d’action est maintenue, voir augmentée, dans le contexte de la diminution de IKur en situation de remodelage électrique induit par la FA. Finalement, nous avons décrit le mécanisme qui sous-tend les propriétés fréquence-dépendantes du bloque de IKur, l’unique courant K+ avec de telles caractéristiques. Jusqu’à très récemment, les fibroblastes cardiaques étaient considérés comme électriquement inactifs. Des travaux expérimentaux ont démontré la présence de canaux ioniques sur la surface de ces fibroblastes ainsi que la possibilité de couplage électrique entre cardiomyocytes et fibroblastes. Nous avons décrit un nouveau type de remodelage électrique en situation d’insuffisance cardiaque, le remodelage des courants ioniques des fibroblastes cardiaques. Ce remodelage est caractérisé par une diminution du courant K+ voltage-dépendant IKv,fb et une augmentation du courant K+ IKir,fb. Nous avons par la suite incorporé ces trouvailles expérimentales dans un modèle mathématique simulant l’interaction électrique entre cardiomyocytes et fibroblastes et montré que le remodelage électrique des fibroblastes peut avoir un impact important sur les propriétés électrophysiologiques des cardiomyocytes. Dans iv un modèle 2-dimensionel de FA, nous avons trouvé que la diminution de IKv,fb a un effet antiarythmique alors que l’augmentation de IKir,fb a des effets proarythmiques. Les études ici présentées utilisent les méthodes de modélisation mathématique pour l’étude de systèmes non-linéaires en électrophysiologie cardiaque et aborder des avenues de recherche difficilement accessibles aux méthodes de laboratoire traditionnelles. Elles démontrent également comment des résultats théoriques peuvent orienter et trouver confirmation dans des travaux expérimentaux subséquents ou, à l’inverse, des trouvailles expérimentales peuvent être implémentées dans les modèles mathématiques pour investiguer les conséquences de celles-ci. La modélisation mathématique est un outil prometteur pour l’étude des effets complexes et non-linéaires de la modulation pharmacologique des canaux ioniques et ainsi contribuer au développement de médicaments antiarythmiques optimisés pour le traitement de la FA, un besoin clinique majeur.
7

Modèle électromécanique du coeur pour l'analyse d'image et la simulation

Sermesant, Maxime 26 May 2003 (has links) (PDF)
Ce manuscrit présente un modèle dynamique de l'activité électromécanique du coeur pour l'analyse de séquences temporelles d'images et la simulation médicale. Tout d'abord, un processus de construction de modèles biomécaniques volumiques du myocarde à l'aide de maillages tétraédriques est mis en place. Puis la propagation du potentiel d'action dans le myocarde est simulée, en se fondant sur des équations aux dérivées partielles de réaction-diffusion de type FitzHugh-Nagumo, qui permettent l'inclusion de pathologies et la simulation d interventions. Ensuite, la contraction du myocarde est modélisée sur un cycle cardiaque grace à une loi de comportement incluant un couplage électromécanique et des conditions limites intégrant l'interaction avec le sang. Ce modéle est ainsi validé à travers certains paramètres globaux et locaux de la fonction ventriculaire cardiaque. Une fois ce modèle électromécanique mis en place, il est utilisé dans une méthode de segmentation par modèle déformable de séquences d'images médicales, afin d'en extraire des paramètres quantitatifs de la fonction cardiaque. Cette nouvelle génération de modéles déformables pro-actifs permet d'intègrer de l'information à priori non seulement sur l'anatomie et le comportement mécanique mais aussi sur l'activité électrique et le mouvement. Le couplage au sein d'un meme modéle d'informations anatomiques, biomécaniques et physiologiques contribué à ameliorer la robustesse et la précision face à des données bruitées et éparses comme les images médicales et ouvre des possibilités supplémentaires en simulation médicale.
8

Schémas d'ordre élevé pour des simulations réalistes en électrophysiologie cardiaque / High order schemes for realistic simulations in cardiac electrophysiology

Douanla Lontsi, Charlie 15 November 2017 (has links)
Les simulations numériques réalistes en électrophysiologie cardiaque ont un coût de calcul extrêmement élevé. Ce coût s’explique en grande partie par la raideur, à la fois en temps et en espace, d’une onde de « potentiel d’action » (PA). Par ailleurs, les phénomènes observés sont très instationnaires et s’étudient en temps long. Une description précise de la dynamique des PA est cruciale pour construire des modèles numériques pertinents d’un point de vue médical ou clinique. Cet aspect fondamental ne peut être contourné dans les études numériques réalistes.La raideur de l’onde de PA ne peut être captée numériquement qu’en ayant recours à des maillages très fins. Ces maillages très fins induisent un coût de calcul très important, et introduisent aussi des erreurs supplémentaires : les systèmes linéaires à résoudre deviennent très mal conditionnés. Au final, les erreurs numériques peuvent être particulièrement grandes dans les simulations alors que leur contrôle est évidemment essentiel pour assurer la fiabilité des résultats. Jusqu’à présent, très peu de résultats sont disponibles pour assurer cette fiabilité. Dans les faits, les erreurs sont la plupart du temps contrôlées par des procédés empiriques. Il existe quelques résultats théoriques étudiant la convergence et la stabilité des schémas numériques associés. En pratique, en plus d'avoir un contrôle de l'erreur sur le potentiel, il est aussi nécessaire d'avoir un contrôle de l’erreur sur des quantités macroscopiques décrivant la dynamique de l’onde de PA : temps d’activation, durée du PA, propriétés de restitution... Ces quantités ont en effet une interprétation physiologique qui permet de caractériser le caractère arythmogène des tissus.Les modèles sont des systèmes d’EDP de réaction-diffusion couplés avec des systèmes d’équations différentielles pouvant être très raides, les modèles ioniques. Ils sont actuellement discrétisés par éléments finis conforme (Lagrange) et par des schémas en temps d’ordre un ou deux. Dans ce travail, nous concevons et évaluons l’intérêt d'utiliser des méthodes d’ordre supérieure pour ces systèmes. Parallèlement nous introduisons d'une part une nouvelle classe de schémas appelé schémas exponentiel Adams Bashforth intégral (IEAB), et d'autre part des schémas Rush Larsen (RL) d'ordre élevé. Ces nouveaux schémas sont des schémas multipas de type exponentiels. Nous montrons qu'ils possèdent des bonnes propriétés de stabilité et permettent de faire face efficacement à la raideur des modèles ioniques. Les schémas que nous proposons sont comparés numériquement (en terme de précision, coût en temps de calcul et stabilité) à plusieurs schémas classiques, ainsi qu'aux schémas exponentiels (RL1, RL2) communément utilisés pour des simulations en électrophysiologie cardiaque. Nous proposons des techniques permettant de calculer avec précision les quantités d’intérêts cliniques (temps d’activation, de récupération, durée du potentiel d’action). Des résultats théoriques de convergence en temps et de convergence globale (espace et temps) sont énoncés et prouvés. Ces résultats sont ensuite illustrés numériquement à travers le modèle monodomaine et les modèles ioniques de Beeler Reuter, de Ten Tusscher et al. L’intérêt d'utiliser des schémas d'ordre élevés est aussi évalué sur des ondes spirales en 2D et 3D. / Realistic numerical simulations in cardiac electrophysiology have a computational cost of extremely high. This cost is largely explained by the stiffness both in time and space, of the action potential (AP) wave. Moreover, the observed phenomena are very unsteady and are studied in long time. A precise description of the dynamic of AP is crucial for constructing relevant numerical models, from a medical or clinical perspective. This fundamental aspect can not be circumvented in realistic numerical studies.The stiffness of AP wave can only be captured numerically, by using very fine meshes. In addition to the high computational cost, these very fine meshes also introduce additional errors : the linear systems to solve become very badly conditioned. In the end, the numerical errors can be particularly large whereas their control is obviously essential to ensure the reliability of the results. So far very few results are available to ensure this reliability. In practice, the errors are mostly controlled by empirical processes. In practice, in addition of having a control of the error on the potential, it is also necessary to have an error control on macroscopic quantities describing the dynamics of the AP wave : activation time, AP duration, properties of restitution ... These quantities have indeed a physiological interpretation which allows to characterize the arrhythmogenic character of the tissues.The models are systems of reaction diffusion PDE coupled with systems of differential equations that can be very stiffs (ionic models). They are currently discretized by conforming finite elements (Lagrange finite elements methods) and by schemes in time of order one or two. In this work, we design and evaluate the interest of using higher order methods for these systems. At the same time, we introduce on the one hand, a new class of schemes called Integral Exponential Adams Bashforth (IEAB) schemes and, on the other hand, high order Rush Larsen (RL) schemes. These new schemes are exponential time-stepping schemes. We show that they have good stability properties and can efficiently cope with the stiffness of ionic models. The schemes we propose are numerically compared (in terms of accuracy, CPU time and stability) with several classical schemes, as well as with the exponential schemes (RL1, RL2), commonly used for cardiac electrophysiology simulations. We propose good techniques for accurately calculating quantities of clinical interest (activation time, recovery time, duration of action potential). Theoretical results of convergence in time and global convergence (in space and time) are stated and proved. These results are then illustrated numerically through the monodomain model and the ionic models of Beeler Reuter, Ten Tusscher et al. The advantage of using high order schemes is also evaluated on spiral waves in 2D and 3D.
9

Modélisation numérique de l'activité électrique dans les oreillettes et les veines pulmonaires / Numerical modeling of the electrical activity of the atria and the pulmonary veins

Labarthe, Simon 13 December 2013 (has links)
Le travail présenté dans ce manuscrit s’articule en trois axes distincts. Dérivation de modèles mathématiques de phénomènes électrophysiologiques en cardiologie Nous utilisons des méthodes d'analyse asymptotique pour dériver un modèle simplifié à partir d'un modèle de tissu auriculaire tridimensionnel, tout en contrôlant l'erreur d'approximation. Ces méthodes ont permis de dériver un modèle bisurfacique qui permet de simuler des comportements tridimensionnels dans les oreillettes pour un coût numérique bidimensionnel afin d'étudier des phénomènes entrant en jeu lors d'arythmies auriculaires, tels que la dissociation électrique ou des hétérogénéités transmurales. La preuve de la convergence du modèle bisurfacique est apportée, et une stratégie d'optimisation du modèle en dehors du régime asymptotique est formalisée. Une méthode d’homogénéisation est également utilisée pour construire un modèle continu homogénéisé de l'activité des myocytes incluant le comportement non linéaire des gap junctions. Processus déclencheurs d'arythmie Des preuves de concepts de mécanismes arythmogènes sont apportées à l'aide de modèles numériques des veines pulmonaires. Le premier mécanisme repose sur un bloc de conduction unidirectionnel engendré par une discontinuité dans la structure fibreuse. Le second est basé sur une dynamique différente lors de la dépolarisation et de la repolarisation lorsque deux couches de fibres de directions différentes sont superposées. Perpétuation des arythmies auriculaires Un modèle bicouche des oreillettes est construit à partir d'une méthode semi-automatique de construction des fibres que nous avons développées. Nous étudions avec l'influence d'hétérogénéités transmurales de fibrose sur la perpétuation des arythmies. Plusieurs protocoles d'ablation sont ensuite testés. Enfin, une méthode de personnalisation du modèle auriculaire est formalisée. / Three axes are explored.Derivation of mathematical models of electrophysiological phenomena applied to cardiology Asymptotic analysis methods allow to derive simplified models from three-dimensional complex atrial ones, while controlling approximation errors. We construct a bilayer surface model that allows to simulate three-dimensional phenomena for a bi-dimensional computational load, and to investigate 3D atrial patterns involved in atrial arrhythmia such as electrical dissociation or transmural heterogeneities. We prove the convergence of the bilayer model, and an optimization strategy to improve the model outside the asymptotic regime is formalised. Homogeneisation methods are also used to construct a homogenized continuous model of the electrical activity of the myocytes that includes the non linear behavior of gap junctions. Triggers of atrial arrhythmia Proofs of concept of arrhythmogenic mechanisms are given by using numerical models of the pulmonary veins. The first mechanism is based on a unidirectional conduction block triggered by a discontinuity of the fibre distribution. The second one comes from a different propagation pattern during the depolarization and the repolarization when two layer of fibres are superimposed. Atrial arrhythmia perpetuation A bilayer model of the atria is constructed from a semi automatic method that we developed. We investigate the influence of transmural heterogeneities of the distribution of fibrosis on the perpetuation of atrial arrhythmia. Several ablation protocols are assessed. Finally, a method of personalization of the model is given.
10

Modélisation de l'activité électrique des oreillettes et des veines pulmonaires

Labarthe, Simon 13 December 2013 (has links) (PDF)
Le travail présenté dans ce manuscrit s'articule en trois axes distincts. 1) Dérivation de modèles mathématiques de phénomènes électrophysiologiques en cardiologie. Nous utilisons des méthodes d'analyse asymptotique pour dériver un modèle simplifié à partir d'un modèle de tissu auriculaire tridimensionnel, tout en contrôlant l'erreur d'approximation. Ces méthodes ont permis de dériver un modèle bisurfacique qui permet de simuler des comportements tridimensionnels dans les oreillettes pour un coût numérique bidimensionnel afin d'étudier des phénomènes entrant en jeu lors d'arythmies auriculaires, tels que la dissociation électrique ou des hétérogénéités transmurales. La preuve de la convergence du modèle bisurfacique est apportée, et une stratégie d'optimisation du modèle en dehors du régime symptotique est formalisée. Une méthode d'homogénéisation est également utilisée pour construire un modèle continu homogénéisé de l'activité des myocytes incluant le comportement non linéaire des gap junctions. 2)Processus déclencheurs d'arythmie. Des preuves de concepts de mécanismes arythmogènes sont apportées à l'aide de modèles numériques des veines pulmonaires. Le premier mécanisme repose sur un bloc de conduction unidirectionnel engendré par une discontinuité dans la structure fibreuse. Le second est basé sur une dynamique différente lors de la dépolarisation et de la repolarisation lorsque deux couches de fibres de directions différentes sont superposées. 3)Perpétuation des arythmies auriculaires. A partir d'un modèle bicouche des oreillettes, nous étudions l'influence d'hétérogénéités transmurales de fibrose sur la perpétuation des arythmies. Plusieurs protocoles d'ablation sont ensuite testés. Enfin, une méthode de personnalisation du modèle auriculaire est formalisée.

Page generated in 0.4737 seconds