• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Problems in nonlinear Bayesian filtering

Pasha, Syed, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2009 (has links)
This dissertation presents solutions to two open problems in estimation theory. The first is a tractable analytical solution for problems in multi-target filtering which are too complex to solve using traditional techniques. The second explores a new approach to the nonlinear filtering problem for a general class of models. The approach to the multi-target filtering problem which involves jointly estimating a random process of the number of targets and their state, developed using the probability hypothesis density (PHD) filter alleviates the intractability of the problem by avoiding explicit data association. Moreover, the notion of linear jump Markov systems is generalized to the multiple target case to accommodate births, deaths and switching dynamics to derive a closed form solution to the PHD recursion for this so-called linear Gaussian jump Markov multi-target model. The proposed solution is general enough to accommodate a broad class of practical problems which are deemed intractable using traditional techniques. Based on this closed form solution, an efficient method is developed for tracking multiple maneuvering targets that switch between multiple models without the need for gating, track initiation and termination, or clustering for extracting state estimates. The approach to the nonlinear filtering problem explores the framework of the virtual linear fractional transformation (LFT) model which localizes the nonlinearity to the feedback with a simple and sparse structure. The LFT is an exact representation for any differentiable nonlinear mapping and therefore amenable to a general class of problems. An alternative analytical approximation method is presented which avoids linearization of the state space model. The uncorrelated structure of the feedback connection gives of the state space model. The uncorrelated structure of the feedback connection gives better second-order moment approximation of the nonlinearly mapped variables. By arranging the unscented transform in the feedback, the prediction and estimation steps are derived in closed form. The proposed filters for the discrete-time model and continuous-time dynamics with sampled-data measurements respectively are shown to be robust under highly nonlinear and uncertain conditions where standard analytical approximation based filters diverge. Moreover, the LFT based filters are efficient for online implementation. In addition, the LFT framework is applied to extend the closed form solution of the PHD recursion to the nonlinear jump Markov multi-target model.
2

Stochastic models and methods for multi-object tracking

Pace, Michele 13 July 2011 (has links) (PDF)
La poursuite multi-cibles a pour objet le suivi d'un ensemble de cibles mobiles à partir de données obtenues séquentiellement. Ce problème est particulièrement complexe du fait du nombre inconnu et variable de cibles, de la présence de bruit de mesure, de fausses alarmes, d'incertitude de détection et d'incertitude dans l'association de données. Les filtres PHD (Probability Hypothesis Density) constituent une nouvelle gamme de filtres adaptés à cette problématique. Ces techniques se distinguent des méthodes classiques (MHT, JPDAF, particulaire) par la modélisation de l'ensemble des cibles comme un ensemble fini aléatoire et par l'utilisation des moments de sa densité de probabilité. Dans la première partie, on s'intéresse principalement à la problématique de l'application des filtres PHD pour le filtrage multi-cibles maritime et aérien dans des scénarios réalistes et à l'étude des propriétés numériques de ces algorithmes. Dans la seconde partie, nous nous intéressons à l'étude théorique des processus de branchement liés aux équations du filtrage multi-cibles avec l'analyse des propriétés de stabilité et le comportement en temps long des semi-groupes d'intensités de branchements spatiaux. Ensuite, nous analysons les propriétés de stabilité exponentielle d'une classe d'équations à valeurs mesures que l'on rencontre dans le filtrage non-linéaire multi-cibles. Cette analyse s'applique notamment aux méthodes de type Monte Carlo séquentielles et aux algorithmes particulaires dans le cadre des filtres de Bernoulli et des filtres PHD.
3

Stochastic models and methods for multi-object tracking / Méthodes et modèles stochastiques pour le suivi multi-objets

Pace, Michele 13 July 2011 (has links)
La poursuite multi-cibles a pour objet le suivi d’un ensemble de cibles mobiles à partir de données obtenues séquentiellement. Ce problème est particulièrement complexe du fait du nombre inconnu et variable de cibles, de la présence de bruit de mesure, de fausses alarmes, d’incertitude de détection et d’incertitude dans l’association de données. Les filtres PHD (Probability Hypothesis Density) constituent une nouvelle gamme de filtres adaptés à cette problématique. Ces techniques se distinguent des méthodes classiques (MHT, JPDAF, particulaire) par la modélisation de l’ensemble des cibles comme un ensemble fini aléatoire et par l’utilisation des moments de sa densité de probabilité. Dans la première partie, on s’intéresse principalement à la problématique de l’application des filtres PHD pour le filtrage multi-cibles maritime et aérien dans des scénarios réalistes et à l’étude des propriétés numériques de ces algorithmes. Dans la seconde partie, nous nous intéressons à l’étude théorique des processus de branchement liés aux équations du filtrage multi-cibles avec l’analyse des propriétés de stabilité et le comportement en temps long des semi-groupes d’intensités de branchements spatiaux. Ensuite, nous analysons les propriétés de stabilité exponentielle d’une classe d’équations à valeurs mesures que l’on rencontre dans le filtrage non-linéaire multi-cibles. Cette analyse s’applique notamment aux méthodes de type Monte Carlo séquentielles et aux algorithmes particulaires dans le cadre des filtres de Bernoulli et des filtres PHD. / The problem of multiple-object tracking consists in the recursive estimation ofthe state of several targets by using the information coming from an observation process. The objective of this thesis is to study the spatial branching processes andthe measure-valued systems arising in multi-object tracking. We focus on a class of filters called Probability Hypothesis Density (PHD) filters by first analyzing theirperformance on simulated scenarii and then by studying their properties of stabilityand convergence. The thesis is organized in two parts: the first part overviewsthe techniques proposed in the literature and introduces the Probability Hypothesis Density filter as a tractable approximation to the full multi-target Bayes filterbased on the Random Finite Sets formulation. A series of contributions concerning the numerical implementation of PHD filters are proposed as well as the analysis of their performance on realistic scenarios.The second part focuses on the theoretical aspects of the PHD recursion in the context of spatial branching processes. We establish the expression of the conditional distribution of a latent Poisson point process given an observation process and propose an alternative derivation of the PHD filter based on this result. Stability properties, long time behavior as well as the uniform convergence of a general class of stochastic filtering algorithms are discussed. Schemes to approximate the measure valued equations arising in nonlinear multi-target filtering are proposed and studied.

Page generated in 0.1075 seconds