• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 3
  • Tagged with
  • 24
  • 24
  • 9
  • 8
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Alocação adaptativa de banda e controle de fluxos de tráfego de redes utilizando sistemas Fuzzy e modelagem multifractal / Adaptive bandwidth allocation and traffic flow control using fuzzy systems and multifractal modeling

Cardoso, Alisson Assis 26 June 2014 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2014-09-24T21:03:59Z No. of bitstreams: 2 finalfinal.pdf: 9639130 bytes, checksum: f602829a491b238a34d40c598dc5893a (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-25T10:32:28Z (GMT) No. of bitstreams: 2 finalfinal.pdf: 9639130 bytes, checksum: f602829a491b238a34d40c598dc5893a (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-25T10:32:28Z (GMT). No. of bitstreams: 2 finalfinal.pdf: 9639130 bytes, checksum: f602829a491b238a34d40c598dc5893a (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-06-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Inthispaperweproposeafuzzymodel,calledFuzzyLMScomAutocorrela¸c˜aoMultifractal, whose weights are updated according to information from multifractal traffic modeling. These weights are calculated by incorporating an analytical expression for the autocorrelation function of a multifractal model in the training algorithm of the fuzzy model that is based on the Wiener-Hopf filter. We evaluate the prediction performance of the proposed network traffic prediction algorithm with respect to other predictors. Further, we propose a bandwidth allocation scheme for network traffic based on the fuzzy prediction algorithm. Comparisons with other bandwidth allocation schemes in terms of byte loss rate, link utilization, buffer occupancy and average queue size verifies the efficiency of the proposed scheme. Also, We propose an other adaptive fuzzy algorithm, called Fuzzy-LMS-OBF com alfa adaptivo , for traffic flow control described by theβMWM model. The proposed algorithm uses Orthonormal Basis Functions (OBF) and its training based on the LMS algorithm. We also present an expression for the optimal traffic source rate derived from Fuzzy LMS. Then, we evaluate the performance of the Fuzzy-LMS-OBF com alfa adaptivo algorithm with respect to other methods. Through simulations, we show that the proposed control scheme is benefited from the superior performance of the proposed fuzzy algorithm. Comparisons with other methods in terms of mean and variance of the queue size in the buffer, Utilization rate of the link, Loss rate and Throughput are presented. / Neste trabalho propomos um modelo fuzzy, nomeado Fuzzy LMS com Autocorrela¸c˜ao Multifractal, cujos pesos s˜ao calculados atrav´es de informa¸c˜oes provindas da an´alise multifractal de s´eries temporais. Esses pesos s˜ao encontrados incorporando uma express˜ao anal´ıtica para a fun¸c˜ao de autocorrela¸c˜ao de um modelo multifractal no algoritmo de treinamento do modelo fuzzy que tem como base o filtro de Wiener-Hopf. Avaliamos ent˜ao o desempenho de predi¸c˜ao de tr´afego de redes do modelo fuzzy proposto adaptativo com rela¸c˜ao a outros preditores. Em seguida, propomos um esquema de aloca¸c˜ao de banda para tr´afego de redes baseado no algoritmo Fuzzy LMS com Autocorrela¸c˜ao Multifractal. Compara¸c˜oes com outros esquemas de aloca¸c˜ao de banda em termos de taxa de perda de bytes, utiliza¸c˜ao do enlace, ocupa¸c˜ao do buffer e tamanho m´edio da fila comprovam a eficiˆencia do algoritmo no esquema utilizado. Al´em disso, propomos um outro algoritmo fuzzy adaptativo para controle de fluxos de tr´afego que podem ser descritos pelo modelo multifractalβMWM, que chamamos de Fuzzy-LMS-OBF com alfa adaptivo, o qual utiliza Fun¸c˜oes de Bases Ortonormal (FBO) e tem como base de treinamento, o algoritmo LMS. Propomos tamb´em uma equa¸c˜ao para c´alculo da taxa ´otima de controle derivada do modelo Fuzzy LMS. Em seguida, avaliamos o desempenho do algoritmo de controle adaptativo proposto com rela¸c˜ao a outros m´etodos. Atrav´es de simula¸c˜oes, mostramos que os esquemas de controle e aloca¸c˜ao de taxa se favorecem do desempenho dos algoritmos fuzzy adaptativos propostos. Compara¸c˜oes com outros m´etodos em termos de tamanho m´edio e variˆancia da fila no buffer, Taxa de Utiliza¸c˜ao do enlace e Vaz˜ao s˜ao apresentadas.
22

Quelques notions d'irrégularité uniforme et ponctuelle : le point de vue ondelettes / Different concepts of uniform and pointwise irregularity : the wavelet point of view

Clausel, Marianne 27 November 2008 (has links)
Le but de cette thèse est de définir puis d'étudier différentes notions d'irrégularité uniforme ou ponctuelle permettant de traduire le fait qu'une fonction peut avoir des 'grands accroissements' à toutes les échelles. Pour cela on 'inverse' les notions de régularité Höldérienne usuelles. L'objectif principal du travail est ensuite de relier ces différentes notions à la théorie des ondelettes. Les critères ondelettes établis vont ainsi permettre de définir des fonctions ou des champs aléatoires dont le comportement est différent suivant la gamme d'échelles considérée. Par ailleurs, si on se place du point de vue ponctuel, une question naturelle est celle de la définition d'une analyse multifractale -dite faible- liée à la notion d'irrégularité ponctuelle. Les ondelettes vont alors permettre de définir des séries d'ondelettes multifractales pour l'irrégularité ponctuelle. Enfin, nous étudions des exemples de champs aléatoires où des propriétés de régularité directionelle apparaissent. Nous nous sommes ainsi centré sur l'étude d'un modèle de champ aléatoire gaussien particulier vérifiant une relation d'autosimilarité matricielle. Nous avons ensuite généralisé ce modèle et introduit des champs gaussiens autosimilaires par rapport à un groupe / The main purpose of this thesis is the definition and the study of different concepts of uniform or pointwise irregularity which enable one to account for the fact that a function may have 'large increments' at any scales. To this end, we 'invert' the usual notions of Hölderian regularity. The main goal is then to relate these different concepts to wavelet theory. The wavelet criteria supplied enable to define functions or random fields the behavior of which differ with respect the family of scales chosen. Moreover, if we consider the pointwise point of view, a natural question is that of the definition of a weak multifractal analysis related to pointwise irregularity. Finally, we study examples of random fields with some properties of directional regularity. Thus we focus on the study of a special model of operator scaling Gaussian field. We then extend this model and introduced group self-similar Gaussian fields
23

Anderson transitions on random Voronoi-Delaunay lattices / Anderson-Übergänge auf zufälligen Voronoi-Delaunay-Gittern

Puschmann, Martin 20 December 2017 (has links) (PDF)
The dissertation covers phase transitions in the realm of the Anderson model of localization on topologically disordered Voronoi-Delaunay lattices. The disorder is given by random connections which implies correlations due to the restrictive lattice construction. Strictly speaking, the system features "strong anticorrelation", which is responsible for quenched long-range fluctuations of the coordination number. This attribute leads to violations of universal behavior in various system, e.g. Ising and Potts model, and to modifications of the Harris and the Imry-Ma criteria. In general, these exceptions serve to further understanding of critical phenomena. Hence, the question arises whether such deviations also occur in the realm of the Anderson model of localization in combination with random Voronoi-Delaunay lattice. For this purpose, four cases, which are distinguished by the spatial dimension of the systems and by the presence or absence of a magnetic field, are investigated by means of two different methods, i.e the multifractal analysis and the recursive Green function approach. The behavior is classified by the existence and type of occurring phase transitions and by the critical exponent v of the localization length. The results for the four cases can be summarized as follows. In two-dimensional systems, no phase transitions occur without a magnetic field, and all states are localized as a result of topological disorder. The behavior changes under the influence of the magnetic field. There are so-called quantum Hall transitions, which are phase changes between two localized regions. For low magnetic field strengths, the resulting exponent v ≈ 2.6 coincides with established values in literature. For higher strengths, an increased value, v ≈ 2.9, was determined. The deviations are probably caused by so-called Landau level coupling, where electrons scatter between different Landau levels. In contrast, the principle behavior in three-dimensional systems is equal in both cases. Two localization-delocalization transitions occur in each system. For these transitions the exponents v ≈ 1.58 and v ≈ 1.45 were determined for systems in absence and in presence of a magnetic field, respectively. This behavior and the obtained values agree with known results, and thus no deviation from the universal behavior can be observed. / Diese Dissertation behandelt Phasenübergange im Rahmen des Anderson-Modells der Lokalisierung in topologisch ungeordneten Voronoi-Delaunay-Gittern. Die spezielle Art der Unordnung spiegelt sich u.a. in zufälligen Verknüpfungen wider, welche aufgrund der restriktiven Gitterkonstruktion miteinander korrelieren. Genauer gesagt zeigt das System eine "starke Antikorrelation", die dafür sorgt, dass langreichweitige Fluktuationen der Verknüpfungszahl unterdrückt werden. Diese Eigenschaft hat in anderen Systemen, z.B. im Ising- und Potts-Modell, zur Abweichung vom universellen Verhalten von Phasenübergängen geführt und bewirkt eine Modifikation von allgemeinen Aussagen, wie dem Harris- and Imry-Ma-Kriterium. Die Untersuchung solcher Ausnahmen dient zur Weiterentwicklung des Verständnisses von kritischen Phänomenen. Somit stellt sich die Frage, ob solche Abweichungen auch im Anderson-Modell der Lokalisierung unter Verwendung eines solchen Gitters auftreten. Dafür werden insgesamt vier Fälle, welche durch die Dimension des Gitters und durch die An- bzw. Abwesenheit eines magnetischen Feldes unterschieden werden, mit Hilfe zweier unterschiedlicher Methoden, d.h. der Multifraktalanalyse und der rekursiven Greensfunktionsmethode, untersucht. Das Verhalten wird anhand der Existenz und Art der Phasenübergänge und anhand des kritischen Exponenten v der Lokalisierungslänge unterschieden. Für die vier Fälle lassen sich die Ergebnisse wie folgt zusammenfassen. In zweidimensionalen Systemen treten ohne Magnetfeld keine Phasenübergänge auf und alle Zustände sind infolge der topologischen Unordnung lokalisiert. Unter Einfluss des Magnetfeldes ändert sich das Verhalten. Es kommt zur Ausformung von Landau-Bändern mit sogenannten Quanten-Hall-Übergängen, bei denen ein Phasenwechsel zwischen zwei lokalisierten Bereichen auftritt. Für geringe Magnetfeldstärken stimmen die erzielten Ergebnisse mit den bekannten Exponenten v ≈ 2.6 überein. Allerdings wurde für stärkere magnetische Felder ein höherer Wert, v ≈ 2.9, ermittelt. Die Abweichungen gehen vermutlich auf die zugleich gestiegene Unordnungsstärke zurück, welche dafür sorgt, dass Elektronen zwischen verschiedenen Landau-Bändern streuen können und so nicht das kritische Verhalten eines reinen Quanten-Hall-Überganges repräsentieren. Im Gegensatz dazu ist das Verhalten in dreidimensionalen Systemen für beide Fälle ähnlich. Es treten in jedem System zwei Phasenübergänge zwischen lokalisierten und delokalisierten Bereichen auf. Für diese Übergänge wurde der Exponent v ≈ 1.58 ohne und v ≈ 1.45 unter Einfluss eines magnetischen Feldes ermittelt. Dieses Verhalten und die jeweils ermittelten Werte stimmen mit bekannten Ergebnissen überein. Eine Abweichung vom universellen Verhalten wird somit nicht beobachtet.
24

Anderson transitions on random Voronoi-Delaunay lattices

Puschmann, Martin 05 December 2017 (has links)
The dissertation covers phase transitions in the realm of the Anderson model of localization on topologically disordered Voronoi-Delaunay lattices. The disorder is given by random connections which implies correlations due to the restrictive lattice construction. Strictly speaking, the system features "strong anticorrelation", which is responsible for quenched long-range fluctuations of the coordination number. This attribute leads to violations of universal behavior in various system, e.g. Ising and Potts model, and to modifications of the Harris and the Imry-Ma criteria. In general, these exceptions serve to further understanding of critical phenomena. Hence, the question arises whether such deviations also occur in the realm of the Anderson model of localization in combination with random Voronoi-Delaunay lattice. For this purpose, four cases, which are distinguished by the spatial dimension of the systems and by the presence or absence of a magnetic field, are investigated by means of two different methods, i.e the multifractal analysis and the recursive Green function approach. The behavior is classified by the existence and type of occurring phase transitions and by the critical exponent v of the localization length. The results for the four cases can be summarized as follows. In two-dimensional systems, no phase transitions occur without a magnetic field, and all states are localized as a result of topological disorder. The behavior changes under the influence of the magnetic field. There are so-called quantum Hall transitions, which are phase changes between two localized regions. For low magnetic field strengths, the resulting exponent v ≈ 2.6 coincides with established values in literature. For higher strengths, an increased value, v ≈ 2.9, was determined. The deviations are probably caused by so-called Landau level coupling, where electrons scatter between different Landau levels. In contrast, the principle behavior in three-dimensional systems is equal in both cases. Two localization-delocalization transitions occur in each system. For these transitions the exponents v ≈ 1.58 and v ≈ 1.45 were determined for systems in absence and in presence of a magnetic field, respectively. This behavior and the obtained values agree with known results, and thus no deviation from the universal behavior can be observed.:1. Introduction 2. Random Voronoi-Delaunay lattice 2.1. Definition 2.2. Properties 2.3. Numerical construction 3. Anderson localization 3.1. Conventional Anderson transition 3.1.1. Fundamentals 3.1.2. Scaling theory of localization 3.1.3. Universality 3.2. Quantum Hall transition 3.2.1. Universality 3.3. Random Voronoi-Delaunay Hamiltonian 4. Methods 4.1. Multifractal analysis 4.1.1. Fundamentals 4.1.2. Box-size scaling 4.1.3. Partitioning scheme 4.1.4. Numerical realization 4.2. Recursive Green function approach 4.2.1. Fundamentals 4.2.2. Recursive formulation 4.2.3. Layer construction 4.3. Finite-size scaling approach 4.3.1. Scaling functions 4.3.2. Numerical determination 5. Electron behavior on 2D random Voronoi-Delaunay lattices 5.1. 2D orthogonal systems 5.2. 2D unitary systems 5.2.1. Density of states and principal behavior 5.2.2. Criticality in the lowest Landau band 5.2.3. Criticality in higher Landau bands 5.2.4. Edge states 6. Electron behavior on 3D random Voronoi-Delaunay lattices 6.1. 3D orthogonal systems 6.1.1. Pure connectivity disorder 6.1.2. Additional potential disorder 6.2. 3D unitary systems 6.2.1. Pure topological disorder 7. Conclusion Bibliography A. Appendices A.1. Quantum Hall effect on regular lattices A.1.1. Simple square lattice A.1.2. Triangular lattice A.2. Further quantum Hall transitions on 2D random Voronoi-Delaunay lattices Lebenslauf Publications / Diese Dissertation behandelt Phasenübergange im Rahmen des Anderson-Modells der Lokalisierung in topologisch ungeordneten Voronoi-Delaunay-Gittern. Die spezielle Art der Unordnung spiegelt sich u.a. in zufälligen Verknüpfungen wider, welche aufgrund der restriktiven Gitterkonstruktion miteinander korrelieren. Genauer gesagt zeigt das System eine "starke Antikorrelation", die dafür sorgt, dass langreichweitige Fluktuationen der Verknüpfungszahl unterdrückt werden. Diese Eigenschaft hat in anderen Systemen, z.B. im Ising- und Potts-Modell, zur Abweichung vom universellen Verhalten von Phasenübergängen geführt und bewirkt eine Modifikation von allgemeinen Aussagen, wie dem Harris- and Imry-Ma-Kriterium. Die Untersuchung solcher Ausnahmen dient zur Weiterentwicklung des Verständnisses von kritischen Phänomenen. Somit stellt sich die Frage, ob solche Abweichungen auch im Anderson-Modell der Lokalisierung unter Verwendung eines solchen Gitters auftreten. Dafür werden insgesamt vier Fälle, welche durch die Dimension des Gitters und durch die An- bzw. Abwesenheit eines magnetischen Feldes unterschieden werden, mit Hilfe zweier unterschiedlicher Methoden, d.h. der Multifraktalanalyse und der rekursiven Greensfunktionsmethode, untersucht. Das Verhalten wird anhand der Existenz und Art der Phasenübergänge und anhand des kritischen Exponenten v der Lokalisierungslänge unterschieden. Für die vier Fälle lassen sich die Ergebnisse wie folgt zusammenfassen. In zweidimensionalen Systemen treten ohne Magnetfeld keine Phasenübergänge auf und alle Zustände sind infolge der topologischen Unordnung lokalisiert. Unter Einfluss des Magnetfeldes ändert sich das Verhalten. Es kommt zur Ausformung von Landau-Bändern mit sogenannten Quanten-Hall-Übergängen, bei denen ein Phasenwechsel zwischen zwei lokalisierten Bereichen auftritt. Für geringe Magnetfeldstärken stimmen die erzielten Ergebnisse mit den bekannten Exponenten v ≈ 2.6 überein. Allerdings wurde für stärkere magnetische Felder ein höherer Wert, v ≈ 2.9, ermittelt. Die Abweichungen gehen vermutlich auf die zugleich gestiegene Unordnungsstärke zurück, welche dafür sorgt, dass Elektronen zwischen verschiedenen Landau-Bändern streuen können und so nicht das kritische Verhalten eines reinen Quanten-Hall-Überganges repräsentieren. Im Gegensatz dazu ist das Verhalten in dreidimensionalen Systemen für beide Fälle ähnlich. Es treten in jedem System zwei Phasenübergänge zwischen lokalisierten und delokalisierten Bereichen auf. Für diese Übergänge wurde der Exponent v ≈ 1.58 ohne und v ≈ 1.45 unter Einfluss eines magnetischen Feldes ermittelt. Dieses Verhalten und die jeweils ermittelten Werte stimmen mit bekannten Ergebnissen überein. Eine Abweichung vom universellen Verhalten wird somit nicht beobachtet.:1. Introduction 2. Random Voronoi-Delaunay lattice 2.1. Definition 2.2. Properties 2.3. Numerical construction 3. Anderson localization 3.1. Conventional Anderson transition 3.1.1. Fundamentals 3.1.2. Scaling theory of localization 3.1.3. Universality 3.2. Quantum Hall transition 3.2.1. Universality 3.3. Random Voronoi-Delaunay Hamiltonian 4. Methods 4.1. Multifractal analysis 4.1.1. Fundamentals 4.1.2. Box-size scaling 4.1.3. Partitioning scheme 4.1.4. Numerical realization 4.2. Recursive Green function approach 4.2.1. Fundamentals 4.2.2. Recursive formulation 4.2.3. Layer construction 4.3. Finite-size scaling approach 4.3.1. Scaling functions 4.3.2. Numerical determination 5. Electron behavior on 2D random Voronoi-Delaunay lattices 5.1. 2D orthogonal systems 5.2. 2D unitary systems 5.2.1. Density of states and principal behavior 5.2.2. Criticality in the lowest Landau band 5.2.3. Criticality in higher Landau bands 5.2.4. Edge states 6. Electron behavior on 3D random Voronoi-Delaunay lattices 6.1. 3D orthogonal systems 6.1.1. Pure connectivity disorder 6.1.2. Additional potential disorder 6.2. 3D unitary systems 6.2.1. Pure topological disorder 7. Conclusion Bibliography A. Appendices A.1. Quantum Hall effect on regular lattices A.1.1. Simple square lattice A.1.2. Triangular lattice A.2. Further quantum Hall transitions on 2D random Voronoi-Delaunay lattices Lebenslauf Publications

Page generated in 0.0528 seconds