• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Learning from Multiple Knowledge Sources

Zhang, Ping January 2013 (has links)
In supervised learning, it is usually assumed that true labels are readily available from a single annotator or source. However, recent advances in corroborative technology have given rise to situations where the true label of the target is unknown. In such problems, multiple sources or annotators are often available that provide noisy labels of the targets. In these multi-annotator problems, building a classifier in the traditional single-annotator manner, without regard for the annotator properties may not be effective in general. In recent years, how to make the best use of the labeling information provided by multiple annotators to approximate the hidden true concept has drawn the attention of researchers in machine learning and data mining. In our previous work, a probabilistic method (i.e., MAP-ML algorithm) of iteratively evaluating the different annotators and giving an estimate of the hidden true labels is developed. However, the method assumes the error rate of each annotator is consistent across all the input data. This is an impractical assumption in many cases since annotator knowledge can fluctuate considerably depending on the groups of input instances. In this dissertation, one of our proposed methods, GMM-MAPML algorithm, follows MAP-ML but relaxes the data-independent assumption, i.e., we assume an annotator may not be consistently accurate across the entire feature space. GMM-MAPML uses a Gaussian mixture model (GMM) and Bayesian information criterion (BIC) to find the fittest model to approximate the distribution of the instances. Then the maximum a posterior (MAP) estimation of the hidden true labels and the maximum-likelihood (ML) estimation of quality of multiple annotators at each Gaussian component are provided alternately. Recent studies show that it is not the case that employing more annotators regardless of their expertise will result in improved highest aggregating performance. In this dissertation, we also propose a novel algorithm to integrate multiple annotators by Aggregating Experts and Filtering Novices, which we call AEFN. AEFN iteratively evaluates annotators, filters the low-quality annotators, and re-estimates the labels based only on information obtained from the good annotators. The noisy annotations we integrate are from any combination of human and previously existing machine-based classifiers, and thus AEFN can be applied to many real-world problems. Emotional speech classification, CASP9 protein disorder prediction, and biomedical text annotation experiments show a significant performance improvement of the proposed methods (i.e., GMM-MAPML and AEFN) as compared to the majority voting baseline and the previous data-independent MAP-ML method. Recent experiments include predicting novel drug indications (i.e., drug repositioning) for both approved drugs and new molecules by integrating multiple chemical, biological or phenotypic data sources. / Computer and Information Science
2

Apprentissage supervisé à partir des multiples annotateurs incertains / Supervised Learning from Multiple Uncertain Annotators

Wolley, Chirine 01 December 2014 (has links)
En apprentissage supervisé, obtenir les réels labels pour un ensemble de données peut être très fastidieux et long. Aujourd'hui, les récentes avancées d'Internet ont permis le développement de services d'annotations en ligne, faisant appel au crowdsourcing pour collecter facilement des labels. Néanmoins, le principal inconvénient de ces services réside dans le fait que les annotateurs peuvent avoir des niveaux d'expertise très hétérogènes. De telles données ne sont alors pas forcément fiables. Par conséquent, la gestion de l'incertitude des annotateurs est un élément clé pour l'apprentissage à partir de multiples annotateurs non experts. Dans cette thèse, nous proposons des algorithmes probabilistes qui traitent l'incertitude des annotateurs et la qualité des données durant la phase d'apprentissage. Trois modèles sont proposés: IGNORE permet de classer de nouvelles instances tout en évaluant les annotateurs en terme de performance d'annotation qui dépend de leur incertitude. X-IGNORE intègre la qualité des données en plus de l'incertitude des juges. En effet, X-IGNORE suppose que la performance des annotateurs dépend non seulement de leur incertitude mais aussi de la qualité des données qu'ils annotent. Enfin, ExpertS répond au problème de sélection d'annotateurs durant l'apprentissage. ExpertS élimine les annotateurs les moins performants, et se base ainsi uniquement sur les labels des bons annotateurs (experts) lors de l'étape d'apprentissage. De nombreuses expérimentations effectuées sur des données synthétiques et réelles montrent la performance et la stabilité de nos modèles par rapport à différents algorithmes de la littérature. / In supervised learning tasks, obtaining the ground truth label for each instance of the training dataset can be difficult, time-consuming and/or expensive. With the advent of infrastructures such as the Internet, an increasing number of web services propose crowdsourcing as a way to collect a large enough set of labels from internet users. The use of these services provides an exceptional facility to collect labels from anonymous annotators, and thus, it considerably simplifies the process of building labels datasets. Nonetheless, the main drawback of crowdsourcing services is their lack of control over the annotators and their inability to verify and control the accuracy of the labels and the level of expertise for each labeler. Hence, managing the annotators' uncertainty is a clue for learning from imperfect annotations. This thesis provides three algorithms when learning from multiple uncertain annotators. IGNORE generates a classifier that predict the label of a new instance and evaluate the performance of each annotator according to their level of uncertainty. X-Ignore, considers that the performance of the annotators both depends on their uncertainty and on the quality of the initial dataset to be annotated. Finally, ExpertS deals with the problem of annotators' selection when generating the classifier. It identifies experts annotators, and learn the classifier based only on their labels. We conducted in this thesis a large set of experiments in order to evaluate our models, both using experimental and real world medical data. The results prove the performance and accuracy of our models compared to previous state of the art solutions in this context.

Page generated in 0.0599 seconds