• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 13
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 24
  • 21
  • 15
  • 13
  • 12
  • 10
  • 10
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Efeito da restrição do fluxo sanguíneo durante o intervalo de repouso entre as séries do treinamento de força sobre o estresse metabólico, a ativação muscular e os ganhos de força e de massa muscular / Effect of blood flow restriction during the rest nterval between sets of resistance training on metabolic stress, muscle activation and strength and muscle mass gains

Teixeira, Emerson Luiz 22 March 2017 (has links)
O objetivo desse estudo foi investigar, no treinamento de força (TF) de alta intensidade, o efeito da aplicação da restrição do fluxo sanguíneo (RFS) durante os intervalos de descanso entre as séries (RFS-I), durante as contrações musculares (RFS-C), ou sem a RFS (TF-AI) em comparação à aplicação da RFS de maneira contínua no TF de baixa intensidade (RFS-S), sobre o torque isométrico máximo (TIM), a força dinâmica máxima (1RM), a área de secção transversa do quadríceps femoral (ASTQ), a concentração de lactato sanguíneo [La] e a amplitude do sinal eletromiográfico (RMS). Quarenta e nove voluntários do sexo masculino, com idade entre 18 e 35 anos, participaram de oito semanas de TF com uma frequência de duas sessões semanais. Foi utilizada a extensão unilateral de joelho nas seguintes condições: RFS-I (3 x 8 repetições, 70% 1RM), RFS-C (3 x 8 repetições, 70% 1RM), TF-AI (3 x 8 repetições, 70% 1RM) e RFS-S (3 x 15 repetições, 20% 1RM). Os resultados demonstraram ganhos similares de TIM entre as condições RFS-I (7,8%); RFS-C (6,5%); TF-AI (6,3%) e RFS-S (7,3%). Já no teste de 1RM, apesar da ausência de diferenças estatísticas, maiores tamanhos de efeito foram observados para as condições de alta intensidade RFS-I (12,8%; TE=0,69); RFS-C (11,5%; TE=0,58) e TF-AI (12,2%; TE=0,52) em comparação a de baixa intensidade RFS-S (6,4%; TE=0,25). Não houve diferença significante no aumento da ASTQ entre as condições RFS-I (7,7%); RFS-C (7,0%); TF-AI (7,3%) e RFS-S (6,1%). O valor pico obtido na [La] foi maior na primeira sessão para RFS-I (4,0 mmol.L-1) comparado à RFS-C (2,7 mmol.L-1); TF-AI (3,4 mmol.L-1) e RFS-S (3,5 mmol.L-1). Na última sessão, esse aumento foi superior para RFS-I (4,8 mmol.L-1) quando comparado à primeira sessão e às condições RFS-C (3,0 mmol.L-1); TF-AI (3,1 mmol.L-1) e RFS-S (3,4 mmol.L-1). A alteração na RMS (média entre as séries) foi similar entre as condições de alta intensidade na primeira sessão RFS-I (145,3%); RFS-C (150,3%) e TF-AI (154,5%) e maiores que a RFS-S (106,7%). Na última sessão, RFS-I (140,7%); RFS-C (154%) e TF-AI (157,4%) foram novamente similares entre si e maiores que RFS-S (97,3%). A RMS na primeira sessão diminuiu da primeira para terceira série (18,9%) na condição RFS-I, sem alterações na última sessão. Por último, apenas a condição RFS-S aumentou a RMS da primeira para a última série, na primeira (18,9%) e última sessão (29,8%) de treino. Em conclusão, embora os ganhos de força isométrica e dinâmica tenham sido similares entre as condições, a força dinâmica aumentou em maior magnitude para as condições de alta intensidade, possivelmente pelos maiores níveis de ativação muscular. Contudo, apesar da RFS-I promover maior estresse metabólico, isso não gerou efeitos adicionais sobre a ativação muscular e os ganhos de massa muscular. Uma provável explicação é que em condições com elevado estresse mecânico o aumento do estresse metabólico não causa efeitos adicionais aos já obtidos pela própria intensidade do treinamento de força / The aim of this study was to investigate, in high intensity resistance training (RT), the effect of blood flow restriction (BFR) applied during rest intervals (BFR-I), during muscle contractions (BFR-C) or without BFR (HI-RT), compared to BFR applied continuously in low-intensity RT (BFR-S), on maximum isometric torque (MIT), maximum dynamic strength (1RM), quadriceps cross-sectional area (QCSA), blood lactate concentration [La] and amplitude of the surface EMG signal (RMS). Forty nine men, age 18-35 years, trained twice per week for a period of eight weeks. They performed unilateral knee extension exercise in the following conditions: BFR-I (3 x 8 repetitions, 70% 1RM), BFR-C (3 x 8 repetitions, 70% 1RM), HI-RT (3 x 8 repetitions, 70% 1RM), and BFR-S (3 x 15 repetitions, 20% 1RM). The results demonstrated similar increases in MIT among all conditions: BFR-I (7.8%), BFR-C (6.5%), HI-RT (6.3%), and BFR-S (7.3%). Despite the lack of statistical differences among groups in the 1RM test, higher effect sizes (ES) were observed for BFR-I (12.8%, ES=0.69), BFR-C (11.5%, ES=0.58), and HI-RT (12.2%, ES=0.69) compared to BFR-S (6.4%, ES=0.25). No significant differences were observed in post-training QCSA among conditions [BFR-I (7.7%), BFR-C (7.0%), HI-RT (7.3%) and BFR-S (6.1%)]. Peak [La] was higher in the first training session for BFR-I (4.0 mmol.L-1) compared to BFR-C (2.7 mmol.L-1), HI-RT (3.4 mmol.L-1), and BFR-S (3.5 mmol.L-1). In the last training session, this increase was higher for BFR-I (4.8 mmol.L-1) when compared to the first session and the BFR-C (3.0 mmol.L-1), HI-RT (3.1 mmol.L-1), and BFR-S (3.4 mmol.L-1). Changes in RMS (average between sets) were similar between highintensity conditions in the first session BFR-I (145.3%), BFR-C (150.3%), and HI-RT (154.5%) and greater than BFR-S (106.7%). In the last session, BFR-I (140.7%), BFR-C (154%), and HI-RT (157.4%) presented similar changes in RMS but greater than RFS-S (97.3%). The RMS decreased from the first to the third set (18.9%) for BFR-I first session, with no change in the last session. Finally, only BFR-S condition increased the RMS from the first to the last set, in the first (18.9%) and last training sessions (29.8%). In conclusion, although isometric and dynamic strength gains were similar between all conditions, dynamic strength increased in greater magnitude for high intensity conditions, possibly due to higher levels of muscle activation. However, in spite of BFR-I promoting greater metabolic stress, this did not result in any additional muscle activation effects and muscle mass gains. One possible explanation is that in conditions with high mechanical stress the increase in metabolic stress do not cause additional effects to those already obtained by the intensity of the strength training itself
42

Satellite cells in human skeletal muscle : molecular identification quantification and function / Satellitceller i human skelettmuskulatur : molekylär identifiering, kvantifiering och funktion

Lindström, Mona January 2009 (has links)
Skeletal muscle satellite cells located between the plasma membrane and the basal lamina of muscle fibres, could for many years, only be studied in situ by electron microscopy. The introduction of immunohistochemistry and the discovery of molecular markers of satellite cells then made them accessible for light microscopic studies and a wealth of information is today available. Satellite cells are myogenic stem cells that can be activated from a quiescent state to proliferate for self-renewal or differentiate into myogenic cells. The satellite cells are involved in muscle growth during fetal and postnatal development and play a key role in repair and regeneration of damaged muscle fibres. The satellite cells are also essential for muscle fibre hypertrophy and maintenance of muscle mass in the adult. When the present thesis was initiated, studies on satellite cells in human skeletal muscle relied on the neuronal cell adhesion molecule (NCAM) as a marker for satellite cell identification. The results from different studies varied markedly. Therefore the aims of the present thesis were i) to develop a highly reliable method using light microscopy for satellite cell identification and quantification in biopsies of human skeletal muscle in normal and pathological conditions. A molecular marker for the myofibre basal lamina or plasma membrane to enhance the reliability of myonuclei and satellite cell identification were to be included. Furthermore unbiased morphometric methods should be used in the quantification process. ii) to evaluate which molecular markers which had been described for satellite cell and stem cell identification in different cell states (quiescence, activated or differentiated) are the most useful for studies on human skeletal muscle. iii) to further explore the function and heterogeneity of satellite cells with respect to different markers in human skeletal muscle by studying the effects of strength-training, intake of anabolic substances and pathological conditions. A new immunofluorescence method was developed where in the same tissue section, two satellite cell markers, the basal lamina and nuclei were monitored. From the evaluation of different markers it was found that both NCAM and Pax7 identified the majority of satellite cells but that both markers were needed for reliable identification. The members of the myogenic regulatory family were evaluated and by using the new method MyoD and myogenin were found to be useful markers to identify activated and differentiated satellite cells. Upon re-examination of biopsies from power-lifters, power-lifters using anabolic substances and untrained subjects it was observed that the new results on satellite cell frequency were significantly different from those obtained when using staining for NCAM and nuclei alone. In addition three subtypes of satellite cells (94.4% NCAM+/Pax7+, 4.2% NCAM+/Pax7– and 1.4% NCAM–/Pax7+) were observed. Thus the multiple marker method gave more information about satellite cells heterogeneity in human muscle and we propose that this is more reliable than previous methods. Low numbers of MyoD or myogenin stained satellite cells were observed in both untrained and strength trained subjects. Other markers such as DLK1/FA1, a member of the EGF-like family and c-Met, the receptor for hepatocyte growth factor showed that satellite cell heterogeneity in human muscle is far greater than previously shown. Furthermore, new evidence is presented for so called fibre splitting observed in hypertrophic muscle fibres to be due to defect regeneration of partially damaged fibres.
43

Efeito da hipóxia local na magnitude da ativação, força, massa e arquitetura muscular decorrente do treinamento de força

Biazon, Thaís Marina Pires de Campos 28 April 2016 (has links)
Submitted by Livia Mello (liviacmello@yahoo.com.br) on 2016-10-05T18:24:22Z No. of bitstreams: 1 DissTMPCB.pdf: 1589921 bytes, checksum: 09e871d1565d828344ed4b2819fe9a86 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T18:50:10Z (GMT) No. of bitstreams: 1 DissTMPCB.pdf: 1589921 bytes, checksum: 09e871d1565d828344ed4b2819fe9a86 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T18:50:17Z (GMT) No. of bitstreams: 1 DissTMPCB.pdf: 1589921 bytes, checksum: 09e871d1565d828344ed4b2819fe9a86 (MD5) / Made available in DSpace on 2016-10-20T18:50:24Z (GMT). No. of bitstreams: 1 DissTMPCB.pdf: 1589921 bytes, checksum: 09e871d1565d828344ed4b2819fe9a86 (MD5) Previous issue date: 2016-04-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Local hypoxia (i.e. intramuscular) resulting from resistance training (RT) contributes to ions H+ accumulation and decreased muscle pH (i.e. metabolic stress). It has been suggested that the accumulation of these metabolites promotes an increase in the motor units (MU) recruitment and consequent increase in cross-sectional area (CSA) and muscle strength. Nevertheless, it remain sunknown whether the level of local hypoxia can affect the magnitude of these adaptations. Objective: The objective of the study was to analyze and compare the effect of local hypoxia during low-intensity resistance training with blood flow restriction (LI-BFR: 3-4 x 20/20% of one repetition maximum [1-RM] / 60% total pressure of occlusion), high-intensity resistance training (HI-RT: 3-4 x 10/80% of 1RM) and high-intensity resistance training with blood flow restriction (HI-BFR: 3-4 x 10/80% 1-RM / 60% total occlusion pressure) on muscle activation, strength, mass and architecture in young individuals. Methods: Thirty young men were selected and each leg allocated to three experimental conditions through unilateral knee extension in randomized order and counterbalanced after ranking by strength level (1- RM) and vastus lateralis (VL) muscle CSA quartiles. The dynamic maximum force was measured by 1-RM test and CSA acquisition, muscle thickness (MT), pennation angle (PA) and VL fascicle length (FL) was performed through ultrasound images. The training program consisted of 10 weeks with a minimum interval of 72 hours between training sessions and the measurement of muscle activation by surface electromyography (EMG) and deoxyhemoglobin ([HHb]) and oxyhemoglobin ([HbO2]) concentrations through near-infrared espectroscopy (NIRS) of VL, performed during the training session with relative load obtained after the 1-RM, before (T1), after five (T2) and ten weeks (T3) training. Results: The training total volume (TV) was greater for HI-RT and HI-BFR compared to LI-BFR. There was no difference between the groups in regarding the increase of 1-RM, CSA, MT and AP. However, the FL showed higher increase for HI-BFR compared to HI-RT and LI-BFR. Regarding the magnitude of the EMG, the HI-BFR group showed higher values than HI-RT and LI-BFR. On the other hand, [HHb] were higher for HI-BFR and LI-BFR, however there was no difference between groups on the reduction of [HbO2].Conclusion: The level of local hypoxia does not influence the magnitude of the increase of muscle activation, strength, mass and architecture changes after resistance training. However, the addition of local hypoxia seems to have a greater contribution to the adjustments resulting from the low-intensity resistance training compared to high intensity. / A hipóxia local (i.e. intramuscular) decorrente do treinamento força (TF) contribui para o acúmulo de íons H+ e diminuição do pH muscular (i.e. estresse metabólico). Sugere-se que o acúmulo desses metabólitos promove aumento no recrutamento de unidades motoras (UM) e consequente aumento da área de secção transversa (AST) e força muscular. Embora isso seja sugerido, ainda não se sabe se o nível de hipóxia local pode afetar a magnitude dessas adaptações. Objetivo: O objetivo do estudo foi analisar e comparar o efeito da hipóxia local durante o treinamento de força de baixa intensidade com restrição do fluxo sanguíneo (TFBI-RFS: 3-4 x 20 / 20% de uma repetição máxima [1-RM] / 60% pressão total de oclusão), treinamento de força de alta intensidade (TFAI: 3-4 x 10 / 80% de 1-RM) e treinamento de força de alta intensidade com restrição do fluxo sanguíneo (TFAI-RFS: 3-4 x 10 / 80% de 1-RM/ 60% pressão total de oclusão) na ativação, força, massa e arquitetura muscular em indivíduos jovens. Métodos: Trinta homens jovens foram selecionados e cada membro inferior alocado nas três condições experimentais de TF de extensão unilateral de joelho em ordem aleatorizada e contrabalanceada após ranqueamento em quartis, para nível de força (1-RM) e AST muscular do músculo vasto lateral (VL). A força máxima dinâmica foi mensurada por meio do teste de 1-RM e a aquisição da AST, espessura muscular (EM), ângulo de penação (AP) e comprimento do fascículo (CF) do VL foi realizada por meio de imagens de ultrassonografia. O programa de treinamento foi composto por 10 semanas com intervalo mínimo de 72 horas entre os treinos. A mensuração da ativação muscular foi realizada por eletromiografia de superfície (EMG) e das concentrações de desoxihemoglobina ([HHb]) e hemoglobina oxigenada ([HbO2]), por meio do near-infrared espectroscopy (NIRS) do VL durante a sessão de treinamento com carga relativa obtida após o teste de 1-RM, antes (T1), após cinco (T2) e dez semanas (T3) do programa de treinamento. Resultados: O volume total (VT) do treinamento foi maior para TFAI e TFAI-RFS comparado ao TFBI-RFS. Não houve diferença entre os grupos em relação ao aumento da 1-RM, AST, EM, AP. Porém, o CF apresentou maior aumento para TFAI-RFS comparado ao TFAI e TFBI-RFS. Em relação à amplitude da EMG, o grupo TFAI-RFS apresentou maiores valores que o TFAI e TFBI-RFS. Por outro lado, as [HHb] foram maiores para o TFAI-RFS e TFBI-RFS, entretanto não houve diferença entre os grupos na redução das [HbO2 ]. Conclusão: O nível de hipóxia local não influência a magnitude do aumento da ativação, força, massa muscular e alterações na arquiteura muscular decorrente do treinamento de força. Entretanto, a adição da hipóxia local parece ter uma maior contribuição para as adaptações decorrentes do treinamento de força de baixa em relação ao de alta intensidade.
44

Efeito da restrição do fluxo sanguíneo durante o intervalo de repouso entre as séries do treinamento de força sobre o estresse metabólico, a ativação muscular e os ganhos de força e de massa muscular / Effect of blood flow restriction during the rest nterval between sets of resistance training on metabolic stress, muscle activation and strength and muscle mass gains

Emerson Luiz Teixeira 22 March 2017 (has links)
O objetivo desse estudo foi investigar, no treinamento de força (TF) de alta intensidade, o efeito da aplicação da restrição do fluxo sanguíneo (RFS) durante os intervalos de descanso entre as séries (RFS-I), durante as contrações musculares (RFS-C), ou sem a RFS (TF-AI) em comparação à aplicação da RFS de maneira contínua no TF de baixa intensidade (RFS-S), sobre o torque isométrico máximo (TIM), a força dinâmica máxima (1RM), a área de secção transversa do quadríceps femoral (ASTQ), a concentração de lactato sanguíneo [La] e a amplitude do sinal eletromiográfico (RMS). Quarenta e nove voluntários do sexo masculino, com idade entre 18 e 35 anos, participaram de oito semanas de TF com uma frequência de duas sessões semanais. Foi utilizada a extensão unilateral de joelho nas seguintes condições: RFS-I (3 x 8 repetições, 70% 1RM), RFS-C (3 x 8 repetições, 70% 1RM), TF-AI (3 x 8 repetições, 70% 1RM) e RFS-S (3 x 15 repetições, 20% 1RM). Os resultados demonstraram ganhos similares de TIM entre as condições RFS-I (7,8%); RFS-C (6,5%); TF-AI (6,3%) e RFS-S (7,3%). Já no teste de 1RM, apesar da ausência de diferenças estatísticas, maiores tamanhos de efeito foram observados para as condições de alta intensidade RFS-I (12,8%; TE=0,69); RFS-C (11,5%; TE=0,58) e TF-AI (12,2%; TE=0,52) em comparação a de baixa intensidade RFS-S (6,4%; TE=0,25). Não houve diferença significante no aumento da ASTQ entre as condições RFS-I (7,7%); RFS-C (7,0%); TF-AI (7,3%) e RFS-S (6,1%). O valor pico obtido na [La] foi maior na primeira sessão para RFS-I (4,0 mmol.L-1) comparado à RFS-C (2,7 mmol.L-1); TF-AI (3,4 mmol.L-1) e RFS-S (3,5 mmol.L-1). Na última sessão, esse aumento foi superior para RFS-I (4,8 mmol.L-1) quando comparado à primeira sessão e às condições RFS-C (3,0 mmol.L-1); TF-AI (3,1 mmol.L-1) e RFS-S (3,4 mmol.L-1). A alteração na RMS (média entre as séries) foi similar entre as condições de alta intensidade na primeira sessão RFS-I (145,3%); RFS-C (150,3%) e TF-AI (154,5%) e maiores que a RFS-S (106,7%). Na última sessão, RFS-I (140,7%); RFS-C (154%) e TF-AI (157,4%) foram novamente similares entre si e maiores que RFS-S (97,3%). A RMS na primeira sessão diminuiu da primeira para terceira série (18,9%) na condição RFS-I, sem alterações na última sessão. Por último, apenas a condição RFS-S aumentou a RMS da primeira para a última série, na primeira (18,9%) e última sessão (29,8%) de treino. Em conclusão, embora os ganhos de força isométrica e dinâmica tenham sido similares entre as condições, a força dinâmica aumentou em maior magnitude para as condições de alta intensidade, possivelmente pelos maiores níveis de ativação muscular. Contudo, apesar da RFS-I promover maior estresse metabólico, isso não gerou efeitos adicionais sobre a ativação muscular e os ganhos de massa muscular. Uma provável explicação é que em condições com elevado estresse mecânico o aumento do estresse metabólico não causa efeitos adicionais aos já obtidos pela própria intensidade do treinamento de força / The aim of this study was to investigate, in high intensity resistance training (RT), the effect of blood flow restriction (BFR) applied during rest intervals (BFR-I), during muscle contractions (BFR-C) or without BFR (HI-RT), compared to BFR applied continuously in low-intensity RT (BFR-S), on maximum isometric torque (MIT), maximum dynamic strength (1RM), quadriceps cross-sectional area (QCSA), blood lactate concentration [La] and amplitude of the surface EMG signal (RMS). Forty nine men, age 18-35 years, trained twice per week for a period of eight weeks. They performed unilateral knee extension exercise in the following conditions: BFR-I (3 x 8 repetitions, 70% 1RM), BFR-C (3 x 8 repetitions, 70% 1RM), HI-RT (3 x 8 repetitions, 70% 1RM), and BFR-S (3 x 15 repetitions, 20% 1RM). The results demonstrated similar increases in MIT among all conditions: BFR-I (7.8%), BFR-C (6.5%), HI-RT (6.3%), and BFR-S (7.3%). Despite the lack of statistical differences among groups in the 1RM test, higher effect sizes (ES) were observed for BFR-I (12.8%, ES=0.69), BFR-C (11.5%, ES=0.58), and HI-RT (12.2%, ES=0.69) compared to BFR-S (6.4%, ES=0.25). No significant differences were observed in post-training QCSA among conditions [BFR-I (7.7%), BFR-C (7.0%), HI-RT (7.3%) and BFR-S (6.1%)]. Peak [La] was higher in the first training session for BFR-I (4.0 mmol.L-1) compared to BFR-C (2.7 mmol.L-1), HI-RT (3.4 mmol.L-1), and BFR-S (3.5 mmol.L-1). In the last training session, this increase was higher for BFR-I (4.8 mmol.L-1) when compared to the first session and the BFR-C (3.0 mmol.L-1), HI-RT (3.1 mmol.L-1), and BFR-S (3.4 mmol.L-1). Changes in RMS (average between sets) were similar between highintensity conditions in the first session BFR-I (145.3%), BFR-C (150.3%), and HI-RT (154.5%) and greater than BFR-S (106.7%). In the last session, BFR-I (140.7%), BFR-C (154%), and HI-RT (157.4%) presented similar changes in RMS but greater than RFS-S (97.3%). The RMS decreased from the first to the third set (18.9%) for BFR-I first session, with no change in the last session. Finally, only BFR-S condition increased the RMS from the first to the last set, in the first (18.9%) and last training sessions (29.8%). In conclusion, although isometric and dynamic strength gains were similar between all conditions, dynamic strength increased in greater magnitude for high intensity conditions, possibly due to higher levels of muscle activation. However, in spite of BFR-I promoting greater metabolic stress, this did not result in any additional muscle activation effects and muscle mass gains. One possible explanation is that in conditions with high mechanical stress the increase in metabolic stress do not cause additional effects to those already obtained by the intensity of the strength training itself
45

The Role of Chicken Delta-Like Protein 1 Expression in Skeletal Muscle Development and Regeneration

Shin, Jonghyun 01 October 2009 (has links)
No description available.

Page generated in 0.0746 seconds