Spelling suggestions: "subject:"ofmuscle contractstipulation"" "subject:"ofmuscle contraregulation""
1 |
MOVEMENT-RELATED CEREBRAL POTENTIALS AND THEIR ASSOCIATION WITH MOVEMENT TERMINATIONWilke, John Thomas January 1973 (has links)
No description available.
|
2 |
CENTRAL AND PERIPHERAL FACTORS UNDERLYING BILATERAL INHIBITION DURING MAXIMAL EFFORTS.HOWARD, JAMES DAVID. January 1987 (has links)
It has been shown that maximal, bilateral efforts result in both a force and EMG deficit when compared to maximal, unilateral activation of the same musculature. It is unclear whether this deficit is the result of interactions of central or peripheral origin. The first aim study investigated the bilateral performance index (BPI (%) = [100 x bilateral force/(right unilateral + left unilateral forces)] - 100) for maximal, isometric, extensor torques about the knee joint in three groups of subjects: untrained (never lifted weights), cyclists (leg musculature trained reciprocally), and weightlifters (legs trained bilaterally). The BPI for the weightlifters (+7.0 ± 5.0%) was significantly (p < 0.05) greater than the BPI of the cyclists (-4.0 ± 6.3%) or the untrained subjects (-9.7 ± 5.2%). These results indicate that the inhibitory mechanisms previously proposed to act during bilateral efforts are inadequate, and that excitatory factors must be present to achieve a BPI > 0. The second aim study showed that the BPI can be altered as a result of three weeks of bilateral isometric strength training. The BPI's for the control and unilateral training groups were not significantly different pre- to posttraining. However, the BPI of the bilateral training group increased significantly (p < 0.05) from -3.7 ± 6.9% prior to training, to +4.2 ± 4.4% after training. These findings indicate that bilateral strength training can alter the relationship between unilateral and bilateral force output. The third aim study demonstrated that subjects with a positive BPI (+6.8 ± 4.3%) responded differently to an afferent perturbation (electrical stimulation) than subjects with a negative BPI (-10.0 ± 5.2%). The negative BPI group showed a 5.7 ± 3.4% facilitation in force during contralateral electrical stimulation. This was significantly (p < 0.05) less than the 16.5 ± 7.5% facilitation shown by the positive BPI group. These results indicate that afferent feedback can alter the force output in the contralateral limb, and may thereby play a role in unilateral-bilateral force differences.
|
3 |
Neuroregulation and Myosin Light Chain Phosphorylation in Ascaris Suum Obliquely Striated Skeletal MuscleMartin, Rex E. (Rex Edward) 08 1900 (has links)
Extraction and quantitation of myosin light chain two coupled with myograph recordings from Ascaris muscle perfused with calmodulin inhibitors and neurotransmitters in conjunction with their respective agonists and antagonists have been used to establish the regulation of contraction in this muscle. Densitometric tracings of isolectric focusing gels separating the regulatory light chain were used to quantitate phosphorylation in resting, contracted and flaccid muscle. These studies indicated that inhibitory neurostimulation is mediated by a true GABA receptor. Myosin-mediated contraction is responsible for maintaining the level of tension observed in resting actin-mediated muscle. Actin-mediated contraction is responsible for the rapid rise in tension following excitatory stimuli. Both systems function simultaneously and are independant.
|
4 |
Contribution à l'étude de la potentialisation de post-activation et de ses implications fonctionnelles chez l'hommeBaudry, Stéphane January 2006 (has links)
Doctorat en Sciences de la motricité / info:eu-repo/semantics/nonPublished
|
5 |
Effects of dietary fish oil and fibre on contractility of gut smooth muscle.Patten, Glen Stephen January 2008 (has links)
From animal experimentation, and studies using in vitro models, there was evidence in the literature to suggest that dietary fibre may influence contractility and motility of the gastrointestinal tract and long chain (LC) n-3 polyunsaturated fatty acids (PUFAs) from marine sources may influence contractility of smooth muscle cells in blood vessels. The hypothesis of this thesis was that dietary fish oil and/or fibre influence the contractility of isolated intact sections of gut smooth muscle tissue from small animal models. Methodology was established to measure in vitro contractility of intact pieces of guinea pig ileum with the serosal side isolated from the lumen. It was demonstrated that four amino acid peptides from κ-casein (casoxins) applied to the lumen overcame morphine-induced inhibition of contraction. Using this established technology, the guinea pig was used to investigate the effects of dietary fibre and fish oil supplementation on gut in vitro contractility. In separate experiments, changes in sensitivity to electrically-driven and 8-iso-prostanglandin (PG)E₂-induced contractility were demonstrated for dietary fibre and fish oil. A modified, isolated gut super-perfusion system was then established for the rat to validate these findings. It was subsequently shown that LC n-3 PUFA from dietary fish oil significantly increased maximal contraction in response to the G-protein coupled receptor modulators, acetylcholine and the eicosanoids PGE₂, PGF₂α, 8-iso-PGE₂ and U-46619 in ileum but not colon, without changes in sensitivity (EC₅₀), when n-3 PUFA as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) had been incorporated to a similar degree into the gut total phospholipid membrane pool. It was further established that the spontaneously hypertensive rat (SHR) had a depressed prostanoid (PGE₂and PGF₂α) response in the gut that could be restored by dietary fish oil supplementation (5% w/w of total diet) in the ileum but not the colon. Importantly, the muscarinic response in the colon of the SHR was increased by fish oil supplementation with DHA likely to be the active agent. Dietary fish oil dose experiments deduced differential increases in response occurred at fish oil concentrations of 1% for muscarinic and 2.5% (w/w) for prostanoid stimulators of the ileum with no difference in receptor-independent KCl-induced depolarization-driven contractility. Studies combining high amylose resistant starch (HAMS, 10% w/w) and fish oil (10% w/w) fed to young rats demonstrated a low prostanoid response that was enhanced by dietary fish oil but not resistant starch. There was however, an interactive effect of the HAMS and fish oil noted for the muscarinic-mimetic, carbachol. Generally, resistant starch increased the large bowel short chain fatty acid pool with a subsequent lower pH. Binding studies determined that while the total muscarinic receptor binding properties of an isolated ileal membrane fraction were not affected in mature rats by dietary fish oil, young rats had a different order of muscarinic receptor subtype response with a rank order potency of M₃ > M₁ > M₂ compared to mature animals of M₃ > M₂ > M₁ with fish oil altering the sensitivity of the M₁ receptor subtype in isolated carbachol-precontracted ileal tissue. In conclusion, experiments using the guinea pig and rat gut models demonstrated that dietary fish oil supplementation, and to a lesser degree fibre, increased receptor-driven contractility in normal and compromised SHR ileum and colon. Further, changes in responsiveness were demonstrated in the developing rat gut prostanoid and muscarinic receptor populations that could be altered by dietary fish oil. Preliminary evidence suggested that fish oil as DHA may alter receptor-driven gut contractility by mechanisms involving smooth muscle calcium modulation. Defining the role that dietary fibre and fish oil, and other nutrients, play in normal and diseased states of bowel health such as inflammatory bowel disease (IBD), where contractility is compromised, are among the ongoing challenges. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1316907 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008
|
6 |
Effects of dietary fish oil and fibre on contractility of gut smooth muscle.Patten, Glen Stephen January 2008 (has links)
From animal experimentation, and studies using in vitro models, there was evidence in the literature to suggest that dietary fibre may influence contractility and motility of the gastrointestinal tract and long chain (LC) n-3 polyunsaturated fatty acids (PUFAs) from marine sources may influence contractility of smooth muscle cells in blood vessels. The hypothesis of this thesis was that dietary fish oil and/or fibre influence the contractility of isolated intact sections of gut smooth muscle tissue from small animal models. Methodology was established to measure in vitro contractility of intact pieces of guinea pig ileum with the serosal side isolated from the lumen. It was demonstrated that four amino acid peptides from κ-casein (casoxins) applied to the lumen overcame morphine-induced inhibition of contraction. Using this established technology, the guinea pig was used to investigate the effects of dietary fibre and fish oil supplementation on gut in vitro contractility. In separate experiments, changes in sensitivity to electrically-driven and 8-iso-prostanglandin (PG)E₂-induced contractility were demonstrated for dietary fibre and fish oil. A modified, isolated gut super-perfusion system was then established for the rat to validate these findings. It was subsequently shown that LC n-3 PUFA from dietary fish oil significantly increased maximal contraction in response to the G-protein coupled receptor modulators, acetylcholine and the eicosanoids PGE₂, PGF₂α, 8-iso-PGE₂ and U-46619 in ileum but not colon, without changes in sensitivity (EC₅₀), when n-3 PUFA as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) had been incorporated to a similar degree into the gut total phospholipid membrane pool. It was further established that the spontaneously hypertensive rat (SHR) had a depressed prostanoid (PGE₂and PGF₂α) response in the gut that could be restored by dietary fish oil supplementation (5% w/w of total diet) in the ileum but not the colon. Importantly, the muscarinic response in the colon of the SHR was increased by fish oil supplementation with DHA likely to be the active agent. Dietary fish oil dose experiments deduced differential increases in response occurred at fish oil concentrations of 1% for muscarinic and 2.5% (w/w) for prostanoid stimulators of the ileum with no difference in receptor-independent KCl-induced depolarization-driven contractility. Studies combining high amylose resistant starch (HAMS, 10% w/w) and fish oil (10% w/w) fed to young rats demonstrated a low prostanoid response that was enhanced by dietary fish oil but not resistant starch. There was however, an interactive effect of the HAMS and fish oil noted for the muscarinic-mimetic, carbachol. Generally, resistant starch increased the large bowel short chain fatty acid pool with a subsequent lower pH. Binding studies determined that while the total muscarinic receptor binding properties of an isolated ileal membrane fraction were not affected in mature rats by dietary fish oil, young rats had a different order of muscarinic receptor subtype response with a rank order potency of M₃ > M₁ > M₂ compared to mature animals of M₃ > M₂ > M₁ with fish oil altering the sensitivity of the M₁ receptor subtype in isolated carbachol-precontracted ileal tissue. In conclusion, experiments using the guinea pig and rat gut models demonstrated that dietary fish oil supplementation, and to a lesser degree fibre, increased receptor-driven contractility in normal and compromised SHR ileum and colon. Further, changes in responsiveness were demonstrated in the developing rat gut prostanoid and muscarinic receptor populations that could be altered by dietary fish oil. Preliminary evidence suggested that fish oil as DHA may alter receptor-driven gut contractility by mechanisms involving smooth muscle calcium modulation. Defining the role that dietary fibre and fish oil, and other nutrients, play in normal and diseased states of bowel health such as inflammatory bowel disease (IBD), where contractility is compromised, are among the ongoing challenges. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1316907 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008
|
7 |
Etude de la spécificité de la commande motrice et de sa régulation pendant différents types de contractions musculairesPasquet, Benjamin 07 September 2009 (has links)
Le but de cette dissertation doctorale était de mieux comprendre les mécanismes de contrôle tant centraux que périphériques qui sont à l’origine de la régulation neuromusculaire lors de mouvement impliquant des contractions de type excentrique. Lors d’une première étude réalisée sur le muscle jambier antérieur, nous avons montré qu’un exercice utilisant des contractions excentriques présentait une meilleure résistance à la fatigue que lorsque des contractions concentriques étaient impliquées puisque celui-ci conduit à une moindre diminution du couple de force et de l’activité électromyographique. L’absence de fatigue nerveuse centrale et l’observation d’un comportement spécifique du couple de force et de l’activité électromyographique lors de ces épreuves de fatigue semblait traduire la mise en jeu de processus périphériques différents. La plus grande fatigue observée lors de l’épreuve concentrique suggérait une activation plus importante que pour l’épreuve excentrique, dont les conséquences métaboliques renforcent les altérations du couplage excitation-contraction. Dans un second temps, nous avons étudié l’effet des modifications de longueur de fascicule du muscle jambier antérieur sur le comportement spécifique des unités motrices (ordre, fréquence et seuil de recrutement) lors de contractions isométriques. Nous avons ensuite analysé le comportement d’unités motrices selon les différentes modalités de contractions (concentrique vs. excentrique) sur ce même muscle. Pour y répondre, différentes techniques d’analyse ont été utilisées dont l’enregistrement électromyographique intramusculaire et l’ultrasonographie. Enfin, nous avons cherché à analyser l’évolution des différents mécanismes de régulation d’origine périphérique et /ou central susceptible de modifier l’excitabilité du pool de motoneurone lors de contractions concentriques et excentriques. Pour y répondre, les modulations d’une part, du réflexe de Hoffmann (réflexe H) par stimulation électrique et d’autre part, celles du potentiel moteur évoqué (MEP) par stimulation magnétique transcorticale, ont été investiguées. Ces réponses ont été enregistrées à différents angles de la plage articulaires étudiée lors des contractions concentriques et excentriques, ainsi qu’aux deux extrémités angulaires lors de contraction isométriques. Notre travail indique que l’ordre de recrutement des unités motrices entre les contractions concentriques et excentriques étant identique, le système nerveux n’utilise qu’une seule et même stratégie d’activation liée à la taille des motoneurones impliqués dans ces deux types de contractions. En outre, les contractions excentriques lorsqu’elles sont réalisées à vitesse constante, sont associées à une modulation spécifique de la fréquence de décharge des unités motrices. Ce comportement diffère de celui observé lors de contractions concentriques, malgré une modification linéaire et similaire de la longueur des fascicules et du couple de force au cours de ces deux tâches. Les modulations du recrutement des unités motrices semblent davantage dépendre de la longueur musculaire tandis que les modulations de fréquence prédominent pendant les contractions en raccourcissement. Ce comportement spécifique semble dépendant de mécanismes de régulation principalement localisés au niveau spinal. Ainsi, le degré d’inhibition des afférences fusoriales affectant le pool de motoneurones du muscle tibial antérieur lors de sollicitations actives du muscle, dépend davantage de l’angle articulaire et donc de la longueur du muscle plutôt que du mode de contraction. Lors de sollicitations isométriques, le retour sensoriel Ia est principalement contrôlé au niveau présynaptique en fonction de la longueur du muscle. Lors de sollicitations concentriques et excentriques, ces mécanismes présynaptiques réguleraient l'excitabilité spinale de manière similaire entre les deux modes. Néanmoins, bien que l'inhibition présynaptique soit probablement plus marquée lors des sollicitations excentriques, ce mode de contraction semble également régulé par des mécanismes d'inhibition intervenant au niveau postsynaptique tel que l'inhibition récurrente de Renshaw. Ce mécanisme localisé au niveau postsynaptique permettrait de réguler la fréquence de pulsation des unités motrices lors de sollicitations excentriques dans le but le faciliter l'exécution du mouvement. L'originalité de notre travail a été d’étudier le comportement d’une même unité dans les deux modes de contractions alors que la méthode d’analyse généralement adoptée consistait à comparer des populations d’unités motrices entre-elles. De plus, les changements de la longueur du muscle au cours du mouvement ainsi que les vitesses de raccourcissement ou d'allongement ont été estimés à partir de la mesure directe de la longueur des fascicules musculaires. Cette dernière présente l’avantage de fournir une information de longueur et de vitesse sur la portion de muscle à partir de laquelle les enregistrements d’unités motrices ont été obtenus. Enfin, étant donné les modulations possibles tant au niveau spinal que supraspinal des mécanismes nerveux mis en jeu, il semblait important d’analyser celles-ci pendant le mouvement et aux différents angles investigués. Cette précision méthodologique a permis d'élargir la discussion concernant les possibles modifications de la balance "excitation-inhibition" lors de sollicitations excentriques, qui, jusqu’à présent, n'avaient été analysées que pour un angle articulaire donné. / Doctorat en Sciences de la motricité / info:eu-repo/semantics/nonPublished
|
8 |
Visually displayed-EMG biofeedback : training muscle relaxation in hearing impaired children :a thesis ...Bene, Cheryl Renee 01 January 1988 (has links)
The purpose of the present study was to test the use of visually displayed EMG biofeedback as a means for training hearing impaired adolescents to reduce anterior temporalis or frontalis muscle tension . Five male and four female hearing impaired students between the ages of 13 and 15 were chosen from the California School for the Deaf, Fremont, CA to serve as participants. Each participant was randomly assigned to either an experimental or control condition. Participants in the experimental groups were given five 15 minute EMG biofeedback training sessions. An additional group of 4 adolescents with normal hearing from Marshall Junior High School, Stockton, CA served as a hearing control group. The dependent measure was a 5 minute pretest and post-test measurement of muscle tension (in microvolts).
Split-plot analyses were performed to determine if there were significant differences between a ) the .hearing impaired experimental and the hearing impaired control groups, b) the hearing impaired control and the hearing control groups, and c) the hearing impaired experimental group and the hearing control group.
Results of the analyses showed that at post-test both the hearing impaired experimental group and the hearing control group showed a significant decrease in muscle tension F(1,7)=5.85 p< .05. The interaction was nonsignificant. Comparison of the two control groups showed that at post-test the two groups were not significantly different in levels of muscle tension. The comparison between the hearing impaired experimental and the hearing control groups resulted in a significant interaction (Group X Time of Testing) F( 1,6)=9.47, p=.02, and the main effect for time of testing approached significance.
|
9 |
High conductance, Ca2+-activated K+ channel modulation by acetylcholine in single pulmonary arterial smooth muscle cells of the Wistar-Kyoto and spontaneously hypertensive rats.January 2007 (has links)
Kattaya-Annappa-Seema. / Thesis submitted in: December 2006. / "2+" and "+" in the title are superscripts. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 162-188). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.viii / Abstracts published based on work in this thesis --- p.ix / Table of contents --- p.x / Chapter Chapter 1: --- Introduction / Chapter 1.1 --- Pulmonary hypertension / Chapter 1.1.1 --- Pulmonary circulation and its functions --- p.1 / Chapter 1.1.2 --- Pulmonary vascular diseases and symptoms --- p.3 / Chapter 1.2 --- Muscarinic Receptor functions --- p.5 / Chapter 1.3 --- Acetylcholine (ACh) and its function --- p.7 / Chapter 1.4 --- ACh receptors in pulmonary vascular bed --- p.11 / Chapter 1.5 --- Potassium channel classification and functions --- p.12 / Chapter 1.5.1 --- "Importance of High-conductance, Ca2+ activated potassium channel (BKca) in vascular smooth muscle functions" --- p.15 / Chapter 1.5.2 --- Modulation of BKca channel by various cations --- p.18 / Chapter 1.6 --- Calcium signaling and homeostasis --- p.20 / Chapter 1.7 --- Role of sodium in hypertension --- p.22 / Chapter 1.8 --- Na+-H+ exchanger (NHE) functions --- p.25 / Chapter 1.9 --- Na+-Ca2+ exchanger (NCX) in vascular smooth muscle cells --- p.29 / Chapter 1.10 --- Spontaneously hypertensive rat (SHR) / Chapter 1.10.1 --- Hypertension in SHR --- p.32 / Chapter 1.10.2 --- BKca in smooth muscle vasculature of SHR --- p.33 / OBJECTIVES OF THE STUDY --- p.34 / Chapter Chapter 2: --- Material and methods / Chapter 2.1 --- Material / Chapter 2.1.1 --- Solutions and Drugs --- p.35 / Chapter 2.1.2 --- Chemicals and Enzymes --- p.39 / Chapter 2.2 --- Methods / Chapter 2.2.1 --- Isolation of single pulmonary arterial smooth muscle cells --- p.40 / Chapter 2.2.2 --- Electrophysiological measurement --- p.42 / Chapter 2.2.3 --- Data analysis --- p.44 / Chapter Chapter 3: --- Receptor-mediated activation of BKca Channel / Chapter 3.1 --- BKCa activation by ACh/ Carbachol (CCh) --- p.45 / Chapter 3.2 --- Role of extracellular sodium ([Na+]o)on BKca activation --- p.49 / Chapter 3.3 --- Receptor-mediated activation of BKca in a [Na+]o-containing solution --- p.51 / Chapter 3.4 --- Receptor-mediated activation of BKca in a [Na+]o-free solution --- p.55 / Chapter Chapter 4: --- Non-receptor mediated activation of BKCa Channel / Chapter 4.1 --- Effect of different concentrations of sodium nitroprusside (SNP) on BKCa activation --- p.60 / Chapter 4.2 --- Effect of SNP on BKca activation in a [Na+]o-containing and [Na+]o-free solutions --- p.62 / Chapter Chapter 5: --- Role of NHE in modulating activation of BKCa Channel / Chapter 5.1 --- Effect of Monensin on BKca activation / Chapter 5.1.1 --- Effect of monensin on CCh-mediated activation of BKca in a [Na+]o-containing solution --- p.70 / Chapter 5.1.2 --- Effect of monensin on CCh-mediated activation of BKca in a [Na+]o-free solution --- p.74 / Chapter 5.1.3 --- Effect of monensin on SNP- mediated activation of BKca in [Na+]o-containing and [Na+]o-free solutions --- p.78 / Chapter 5.2 --- Effect of 5-(N-ethyl-N-isopropyI) amiloride (EIPA) on BKCa activation / Chapter 5.2.1 --- Effect of EIPA on CCh-mediated activation of BKca in a [Na+]o-containing solution --- p.85 / Chapter 5.2.2 --- Effect of EIPA on CCh-mediated activation of BKca in a [Na+]。-free solution --- p.89 / Chapter 5.2.3 --- Effect of EIPA on SNP-mediated activation of BKCa in [Na+]o-containing and [Na+]o-free solutions --- p.93 / Chapter Chapter 6: --- Role of NCX in modulating activation of BKCa Channel / Chapter 6.1 --- Effect of KB-R7943 on CCh-mediated activation of BKCa in a [Na+]o-containing solution --- p.100 / Chapter 6.2 --- Effect of KB-R7943 on CCh-mediated activation of BKCa in a [Na+]o-free solution --- p.104 / Chapter 6.3 --- Effect of KB-R7943 on SNP-mediated activation of BKca in [Na+]o-containing and [Na+]o-free solutions --- p.109 / Chapter Chapter 7: --- Effect of intracellular sodium ([Na+]i) on BKCa channel activation / Chapter 7.1 --- Effect of CCh on BKCa channel activation with elevated [Na+]i pipette solution --- p.117 / Chapter 7.2 --- Effect of SNP on BKca channel activation with elevated [Na+]j pipette solution --- p.130 / Chapter Chapter 8: --- Discussion / Chapter 8.1 --- Modulatory effect of ACh and SNP --- p.138 / Chapter 8.2 --- Role of ion exchangers: NHE and NCX in modulating BKca channel function --- p.144 / Chapter 8.3 --- Modulatory effect of elevated [Na+]i on BKca activation --- p.153 / CONCLUSION --- p.161 / References --- p.162
|
10 |
Serum response factor-dependent regulation of smooth muscle gene transcriptionChen, Meng 07 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Several common diseases such as atherosclerosis, post-angioplasty restenosis, and graft vasculopathies, are associated with the changes in the structure and function of smooth muscle cells. During the pathogenesis of these diseases, smooth muscle cells have a marked alteration in the expression of many smooth muscle-specific genes and smooth muscle cells undergo a phenotypic switch from the contractile/differentiated status to the proliferative/dedifferentiated one. Serum response factor (SRF) is the major transcription factor that plays an essential role in coordinating a variety of transcriptional events during this phenotypic change. The first goal of my thesis studies is to determine how SRF regulates the expression of smooth muscle myosin light chain kinase (smMLCK) to mediate changes in contractility. Using a combination of transgenic reporter mouse and knockout mouse models I demonstrated that a CArG element in intron 15 of the mylk1 gene is necessary for maximal transcription of smMLCK. SRF binding to this CArG element modulates the expression of smMLCK to control smooth muscle contractility. A second goal of my thesis work is to determine how SRF coordinates the activity of chromatin remodeling enzymes to control expression of microRNAs that regulate the phenotypes of smooth muscle cells. Using both mouse knockout models and in vitro studies in cultured smooth muscle cells I showed how SRF acts together with Brg1-containing chromatin remodeling complexes to regulate expression of microRNAs-143, 145, 133a and 133b. Moreover, I found that SRF transcription cofactor myocardin acts together with SRF to regulate expression of microRNAs-143 and 145 but not microRNAs-133a and 133b. SRF can, thus, further modulate gene expression through post-transcriptional mechanisms via changes in microRNA levels. Overall my research demonstrates that through direct interaction with a CArG box in the mylk1 gene, SRF is important for regulating expression of smMLCK to control smooth muscle contractility. Additionally, SRF is able to harness epigenetic mechanisms to modulate expression of smooth muscle contractile protein genes directly and indirectly via changes in microRNA expression. Together these mechanisms permit SRF to coordinate the complex phenotypic changes that occur in smooth muscle cells.
|
Page generated in 0.1086 seconds