Spelling suggestions: "subject:"mycelia"" "subject:"mycelial""
11 |
Mathematical and Experimental Investigation of Yeast Colony Development – A Model System for the Growth of Filamentous Fungi in Heterogeneous EnvironmentsWalther, Thomas 07 October 2004 (has links)
In the presented study, dimorphic yeasts were applied as model organisms to study the growth of fungal mycelia. When environmental conditions are chosen appropriately, yeast colonies are built up of well separated individual cells. Thus, in contrast to fungal mycelia the translocation of nutrients and information within the colony can be neglected. The study focuses on the question of how the growth behaviour of a population of single cells is regulated, and which differences can be expected when nutrient translocation actually occurs. To answer this question, at first, an effective method for the highly resolved estimation of biomass distributions inside the colonies was developed. This method facilitates a dynamic non-invasive monitoring of colony development. Furthermore, mathematical models were established which describe the development of the colonies based on the behaviour of discrete individual cells. Growth simulations allow a quantitative prediction, and, thereby, an in silico testing of hypothetic regulatory mechanisms. The growth behaviour of yeast colonies was investigated applying the model organisms Candida boidinii and Yarrowia lipolytica. The yeasts were cultivated on solid agar substrates at various degrees of carbon and nitrogen limitation, respectively. The highest gain of understanding was achieved for the growth of both yeasts on glucose as the limiting carbon source: Investigations showed that mycelial yeast colonies adapt to declining nutrient concentrations by decreasing the cell density in their mycelium while the growth rate of the colony diameter remains constant. Under glucose limitation, the yeast C. boidinii grows diffusion-limited, i.e., the growth of the population is controlled by the amount of nutrient that diffuses towards the colony. The cessation of growth coincides with the depletion of the primary nutrient source glucose from the growth substrate. In contrast to these findings, it was shown that Y. lipolytica colonies continue to extend even after the complete consumption of glucose. In the absence of the primary nutrient source, the yeast assimilates biomass from the inner colony regions to facilitate the growth of the population. The suggested mechanism of coupled extension and decay processes was verified by a number of experiments. However, the mechanism which facilitates the transport of decay products to the growing colony boundary, i.e., the actual nature of the decay process, remains unclear. Mathematical simulations show that a continuous colony extension on the decay products of dying cells cannot be explained by the assumption that colonies are built up of uncoordinatedly growing single cells. Therefore, a hypothesis for the growth of Y. lipolytica colonies was derived which suggests that these populations are built up of tube-like hyphal cells. Accordingly, the measured drop of biomass density in the inner colony areas is the consequence of a cytoplasm transport towards the growing edge of the mycelium where it is assimilated as a secondary nutrient resource in the absence of glucose. It has to be emphasized that this hypothesis also provides a mechanistic explanation for the vacuolisation of hyphae in mycelia of higher fungi. / In der vorgestellten Arbeit wurden dimorphe Hefen als Modellorganismen für die Untersuchung des Wachstums von Pilzmyzelien eingesetzt. Bei geeigneter Wahl der Umgebungsbedingungen sind Hefekolonien aus Einzelzellen aufgebaut, wodurch im Gegensatz zu Myzelien höherer Pilze der Transport von Nährstoffen und Informationen innerhalb der Kolonie vernachlässigt werden kann. Im Mittelpunkt der Untersuchungen stand die Frage, wie das Wachstumsverhalten einer Population individueller Zellen reguliert ist, bzw. welche Unterschiede sich ergeben, wenn ein Nährstofftransport tatsächlich stattfindet. Um diese Fragestellungen bearbeiten zu können, wurde zunächst eine effektive Methode zur hoch ortsaufgelösten Bestimmung der Biomasseverteilung innerhalb der Kolonien entwickelt. Diese Methode ermöglicht ein dynamisches nichtinvasives Monitoring der Entwicklung einer Kolonie. Weiterhin wurden mathematische Modelle entwickelt, die das Wachstumsverhalteeiner Population auf der Grundlage des Verhaltens von diskreten Einzelzellen beschreibt. Die Wachstumssimulationen erlauben quantitative Vorhersagen und damit ein in silico Testen der Auswirkungen von hypothetischen Regulationsmechanismen. Das Wachstumsverhalten von Hefekolonien wurde anhand der Modellorganismen Candida boidinii und Yarrowia lipolytica untersucht. Die Hefen wurden auf festen Agar-Nährböden bei verschieden starker Kohlenstoff- und Stickstofflimitation kultviert. Der größte Erkenntnisgewinn wurde dabei für das Wachstum beider Hefen auf Glukose als limitierender Kohlenstoffquelle erzielt: Die Untersuchungen ergaben, dass myzelartig wachsende Hefekolonien bei sinkenden Nährstoffkonzentrationen eine geringere Zelldichte aber einen konstante Wachstumsgeschwindigkeit des Koloniedurchmessers aufweisen. Die Hefe C. boidinii wächst unter Glukoselimitation diffusionslimitiert, d.h. das Wachstum der Population wird durch die Menge der zur Kolonie diffundierenden Nährstoffe bestimmt. Der Abbruch des Koloniewachstums fällt mit dem Verbrauch der primären Nähstoffquelle Glukose zusammen. Im Gegensatz dazu konnte für das Wachstum von Y. lipolytica gezeigt werden, dass sich die Kolonien auch nach dem vollständigen Verbrauch von Glukose weiter ausdehnen. Im Abwesenheit der primären Nährstoffquelle nutzt die Hefe Zerfallsprodukte eigener Zellmasse aus dem Inneren der Kolonie als Nährstoff, um das weitere Wachstum der Population zu gewährleisten. Während der vorgeschlagene gekoppelte Ausdehnungs- und Zerfallprozess durch eine Reihe von Versuchen experimentell abgesichert wurde, bleibt der Mechanismus des Transports der Zerfallsprodukte zum Kolonierand, bzw. die eigentliche Natur des Zerfallsprozesses unklar. Simulationsrechnungen ergaben, dass eine kontinuierliche Ausdehnung der Kolonie auf Zellzerfallsprodukten sterbender Zellen nicht durch die Annahme erklärt werden kann, dass die Kolonien aus unkoordiniert wachsenden Einzelzellen aufgebaut sind. Aus diesem Grunde wurde für das Wachstum von Y. lipolytica die Hypothese abgeleitet, dass das Myzelium dieser Hefe aus schlauchartigen Hyphenzellen aufgebaut ist. Der gemessene Abfall der Biomassekonzentration im Kolonieinneren ist demnach die Konsequenz des Transports von Zytoplasma hin zum wachsenden Kolonierand, wo es in Abwesenheit von Glukose als sekundäre interne Nährstoffquelle assimiliert wird. Es ist zu beachten, dass diese Hypothese auch eine mechanistische Erklärung für die Ursachen der Vakuolisierung in Myzelien höherer filamentöser Pilze gibt.
|
12 |
Preparation of films and nonwoven composites from fungal microfibers grown in bread wasteKöhnlein, Maximilian January 2020 (has links)
Unsold bread makes up a signification fraction of waste occurring in Swedish supermarkets. This thesis seeks to address the problem of food waste, by cultivating filamentous fungi on bread waste and producing chitinous films and nonwovens from them. Rhizopus delemar was cultivated on bread waste in liquid-state fermentation in order to obtain mycelia biomass. The biomass was processed by alkali or protease treatments to disrupt the fungal cells and remove proteins and fats. Afterwards it was subjected to a bleaching treatment to remove lignin fractions of bread residues. The treated biomass was then subjected to a grinding treatment for a homogeneous dispersion of mycelial fibers, where the dispersion was confirmed by microscopic images. The chemically and mechanically processed biomass was used for the preparation of films and nonwoven composites by employing a wet-laid papermaking process. The films exhibited plastic-like features, due to their brittleness and their smooth upper surface. Films and nonwoven composites were characterized on their tensile properties, surface water contact angle and their surface morphology by scanning electron microscopy. Treating fungal biomass by alkali and then bleaching resulted in films with atensile modulus of 3.38 GPa and an ultimate tensile strength of 71.50 MPa. These are the highest reported tensile properties for mycelia derived films to date. Water contact angle measurements confirmed a hydrophobic quality of mycelial films. Scanning electron microscopy showed a very dense and even surface without an obvious fibrous morphology. Fungal biomass and viscose fibers together form a rigid nonwoven composite, in which fungal biomass takes over the role of a natural eco-friendly binding matrix. Flexural rigidity measurements were out of bounds and need to be confirmed by future studies. Additionally, a second strain of fungi, Fusarium venenatum, was cultivated on bread particles in water suspension in order to determine optimum growth conditions for future scale-up investigations.
|
13 |
PLANT-ENDOPHYTE INTERPLAY PROTECTS TOMATO AGAINST A VIRULENT VERTICILLIUM DAHLIAEShittu, Hakeem Olalekan 05 October 2010 (has links)
When tomato Craigella is infected with Verticillium dahliae Dvd-E6 (Dvd-E6), a tolerant state is induced with substantial pathogen load, but few symptoms. Unexpectedly, these plants are more robust and taller with Dvd-E6 behaving as an endophyte. Some endophytes can protect plants from virulent pathogens. This research was undertaken to improve understanding of the cellular and molecular nature of Verticillium tolerance in tomato, especially whether infection by Dvd-E6 can protect Craigella from virulent V. dahliae, race 1 (Vd1). To permit mixed infection experiments a restriction fragment length polymorphism (RFLP)-based assay was developed and used for differentiating Dvd-E6 from Vd1, when present in mixed infections. The results suggested that protection involves molecular interplay between Dvd-E6 and Vd1 in susceptible Craigella (CS) tomatoes, resulting in restricted Vd1 colonization. Further studies showed a dramatic reduction of Vd1 spores and mycelia. To examine genetic changes that account for these biological changes, a customized DNA chip (TVR) was used to analyze defense gene mRNA levels. The defense gene response was categorized into four groups. Group 1 was characterized by strong induction of defense genes followed by suppression. However, Vd1-induced gene suppression was blocked by Dvd-E6 in mixed infections.
These genes included some transcription factors and PR proteins such as class IV chitinases and beta glucanases which are known to target fungal spores and mycelia. Experiments also were repeated with a Craigella resistant (CR) isoline containing a fully active Ve locus (Ve1+ and Ve2+). The biological results showed that the presence of the Ve1+ allele resulted in restricted Vd1 colonization and, in a mixed infection with Dvd-E6, Vd1 was completely eliminated from the plant stem. Surprisingly, there was no significant increase in defense gene mRNAs. Rather, elevated basal levels of defense gene products appeared sufficient to combat pathogen attack. To investigate functional effects of the genetic changes observed, an inducible RNAi knockdown vector for a defense gene (TUS15G8) with unknown function (pMW4-TUS15G8) as well as the Ve2 resistance gene (pMW-Ve2) was prepared as a initial step for future transformation analyses. Taken together the results reveal intriguing but complex biological and molecular changes in mixed infections, which remain a basis for future experiments and potential agricultural benefits. / Canadian Commonwealth Scholarship and Fellowship Plan
|
Page generated in 0.0282 seconds