• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 301
  • 62
  • 51
  • 49
  • 20
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 888
  • 888
  • 187
  • 144
  • 76
  • 67
  • 62
  • 53
  • 51
  • 45
  • 44
  • 44
  • 43
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
681

Genetic Identification of Novel Mycobacterium tuberculosis Susceptibility and Survival Mechanisms During Antibiotic Treatment

Bellerose, Michelle M. 06 May 2020 (has links)
Effective treatment of tuberculosis requires at least six months of combination therapy involving four antibiotics. Alterations in the physiological state of Mycobacterium tuberculosis during infection may reduce drug efficacy and prolong treatment, but these adaptations are incompletely defined. To investigate the mechanisms limiting antibiotic efficacy, I performed a comprehensive genetic study to identify M. tuberculosis genes and pathways important for bacterial survival during antibiotic treatment in vivo. First, I identified mutants in the glycerol kinase enzyme, GlpK, that promote survival under combination therapy. Similar glycerol catabolic mutants are enriched in extensively drug-resistant clinical isolates, indicating that these mutations may promote survival and the development of resistance in humans. A majority of these mutations are frameshifts within a homopolymeric region of the glpK gene, leading to the hypothesis that M. tuberculosis may reversibly produce drug-tolerant phenotypes through genetic variation introduced at homopolymer sites as a strategy for survival during antibiotic treatment. Second, I identified bacterial mutants with altered susceptibility to individual first-line anti-mycobacterial drugs. Many of these mutations did not have obvious effects in vitro, demonstrating that a wide variety of natural genetic variants can influence drug efficacy in vivo without altering standard drug-susceptibility tests. A number of these genes are enriched in drug-resistant clinical isolates, indicating that these genetic variants influence treatment outcome. Together, these data suggest new targets for improving therapy, as well as mechanisms of genetic adaptations that can reduce antibiotic efficacy and contribute to the evolution of resistance.
682

Identification of Essential Metabolic and Genetic Adaptations to the Quiescent State in Mycobacterium Tuberculosis: A Dissertation

Rittershaus, Emily S. C. 01 December 2016 (has links)
Mycobacterium tuberculosis stably adapts to respiratory limited environments by entering into a nongrowing but metabolically active state termed quiescence. This state is inherently tolerant to antibiotics due to a reduction in growth and activity of associated biosynthetic pathways. Understanding the physiology of the quiescent state, therefore, may be useful in developing new strategies to improve drug efficiency. Here, we used an established in vitro model of respiratory stress, hypoxia, to induce quiescence. We utilized metabolomic and genetic approaches to identify essential and active pathways associated with nongrowth. Our metabolomic profile of hypoxic M. tuberculosis revealed an increase in several free fatty acids, metabolite intermediates in the oxidative pathway of the tricarboxylic acid (TCA) cycle, as well as, the important chemical messenger, cAMP. In tandem, a high-throughput transposon mutant library screen (TnSeq) revealed that a cAMP-regulated protein acetyltransferase, MtPat, was conditionally essential for survival in the hypoxic state. Via 13C-carbon flux tracing we show an MtPat mutant is deficient in re-routing hypoxic metabolism away from the oxidative TCA cycle and that MtPat is involved in inhibiting fatty-acid catabolism in hypoxia. Additionally, we show that reductive TCA metabolism is required for survival of hypoxia by depletion of an essential TCA enzyme, malate dehydrogenase (Mdh) both in in vitro hypoxia and in vivo mouse infection. Inhibition of Mdh with a novel compound resulted in a significantly greater killing efficiency than the first-line anti-M. tuberculosis drug isoniazid (INH). In conclusion, we show that understanding the physiology of the quiescent state can lead to new drug targets for M. tuberculosis.
683

The determination of post-exposure regrowth effects and the bactericidal activity of selected antimycobacterial agents against mycobacterium tuberculosis

Masango, Refilwe Winstance January 2000 (has links)
Thesis (Msc. (Medical Sciences)) -- University of LImpopo, 2000 / Refer to document / Medical Research Council (MRC)
684

The Approach to Characterizing Three <i>S</i>-Adenosyl-L-Methionine-Dependent Methyltransferases from <i>Mycobacterium tuberculosis</i>

Loarer, Gwendal January 2018 (has links)
No description available.
685

Visualizing the connection between L-arginine metabolism and the TCA cycle in Mycobacterium tuberculosis infection in primary mouse macrophages

Robillard, Michelle 15 June 2020 (has links)
No description available.
686

Mycobacterium tuberculosis Affects Protein and Lipid Content of Circulating Exosomes in Infected Patients Depending on Tuberculosis Disease State

Biadglegne, Fantahun, Schmidt, Johannes R., Engel, Kathrin M., Lehmann, Jörg, Lehmann, Robert T., Reinert, Anja, König, Brigitte, Schiller, Jürgen, Kalkhof, Stefan, Sack, Ulrich 13 June 2023 (has links)
Tuberculosis (TB), which is caused by the bacterium Mycobacterium tuberculosis (Mtb), is still one of the deadliest infectious diseases. Understanding how the host and pathogen interact in active TB will have a significant impact on global TB control efforts. Exosomes are increasingly recognized as a means of cell-to-cell contact and exchange of soluble mediators. In the case of TB, exosomes are released from the bacillus and infected cells. In the present study, a comprehensive lipidomics and proteomics analysis of size exclusion chromatography-isolated plasma-derived exosomes from patients with TB lymphadenitis (TBL) and treated as well as untreated pulmonary TB (PTB) was performed to elucidate the possibility to utilize exosomes in diagnostics and knowledge building. According to our findings, exosome-derived lipids and proteins originate from both the host and Mtb in the plasma of active TB patients. Exosomes from all patients are mostly composed of sphingomyelins (SM), phosphatidylcholines, phosphatidylinositols, free fatty acids, triacylglycerols (TAG), and cholesterylesters. Relative proportions of, e.g., SMs and TAGs, vary depending on the disease or treatment state and could be linked to Mtb pathogenesis and dormancy. We identified three proteins of Mtb origin: DNA-directed RNA polymerase subunit beta (RpoC), Diacyglycerol O-acyltransferase (Rv2285), and Formate hydrogenase (HycE), the latter of which was discovered to be differently expressed in TBL patients. Furthermore, we discovered that Mtb infection alters the host protein composition of circulating exosomes, significantly affecting a total of 37 proteins. All TB patients had low levels of apolipoproteins, as well as the antibacterial proteins cathelicidin, Scavenger Receptor Cysteine Rich Family Member (SSC5D), and Ficolin 3 (FCN3). When compared to healthy controls, the protein profiles of PTB and TBL were substantially linked, with 14 proteins being coregulated. However, adhesion proteins (integrins, Intercellular adhesion molecule 2 (ICAM2), CD151, Proteoglycan 4 (PRG4)) were shown to be more prevalent in PTB patients, while immunoglobulins, Complement component 1r (C1R), and Glutamate receptor-interacting protein 1 (GRIP1) were found to be more abundant in TBL patients, respectively. This study could confirm findings from previous reports and uncover novel molecular profiles not previously in focus of TB research. However, we applied a minimally invasive sampling and analysis of circulating exosomes in TB patients. Based on the findings given here, future studies into host–pathogen interactions could pave the way for the development of new vaccines and therapies.
687

Development of Novel Fluorescent Tools for Investigating Virulence Factors and Drug Susceptibility in Mycobacterium tuberculosis

Wilburn, Kaley 01 January 2015 (has links) (PDF)
Mycobacterium tuberculosis (Mtb) is the causative agent of Tuberculosis (TB), a life-threatening disease primarily affecting the lungs that infects about one third of the world's population and causes 1.3 million deaths annually. It is estimated that TB has been infecting humans for around 70,000 years and has killed more people than any other infectious disease. The highly effective, persistent, and multifaceted virulence strategies that have allowed Mtb to continue to spread and thrive for so long are still poorly understood at the molecular level. This lack of knowledge contributes to ongoing challenges to curing TB. Although drugs capable of killing Mtb exist, even strains that are susceptible to these drugs remain so difficult to treat that stringent six- to nine-month courses of four-drug cocktails are required. Practical difficulties in administering full treatments and patient noncompliance have contributed to a rise in drug-resistant TB cases globally. To combat this increasing world health problem, new antibiotic treatments that kill Mtb and drug-resistant Mtb more effectively via new mechanisms of action are necessary. Discovering these antibiotics expediently requires that innovative Mtb-specific drug-screening assays are developed. An ideal and innovative TB drug screening method would target validated protein-protein interactions (PPI) essential to Mtb's pathogenesis and would be performed on whole Mtb cells under relevant in vivo-like conditions. This project focused on engineering several tools relevant to creating an ideal TB drug screen. A protein fragment complementation assay capable of studying PPI of the TB gyrase complex was created, and this assay was assessed for future HTS applications. To streamline the readout, this assay was re-engineered to include green fluorescent protein.
688

Metabolic Regulation of T cell Responses by Antigen Presenting Cells

Crowther, Rebecca 22 August 2022 (has links)
No description available.
689

Engineered Bacteria as Drug Delivery Vehicles for Cancer and Tuberculosis

Harimoto, Tetsuhiro January 2022 (has links)
Microbiome research in the past decade has revealed an astounding prevalence of bacteria in various tissues in the human body. Concurrent progress in synthetic biology has generated a converging interest in the genetic programming of bacteria to locally produce therapeutic payloads and supplant physiological niches. This dissertation presents the development of bioengineering tools that address several key challenges for the clinical translation of therapeutic bacteria. In particular, we focus on the engineering of bacteria for tumor and granuloma applications. Bacteria have been demonstrated to selectively grow within solid tumors, primarily due to the reduced immune surveillance in the necrotic and hypoxic cores. This natural tropism to tumors presents a unique opportunity to engineer bacteria as drug delivery vehicles for cancer therapy. While the recent advancement in microbial engineering has constructed ranges of therapeutic bacteria, a universal bottleneck for clinical development is the lack of tools to rapidly characterize therapeutic candidates in a complex physiological environment. To recapitulate bacterial tumor colonization in vitro, we developed a method that selectively grows bacteria within the necrotic core of tumor spheroids. This platform enabled high-throughput cocultures and predicted in vivo therapeutic outcomes, identifying potent anticancer proteins deliverable by tumor-homing Salmonella typhimurium. To ensure safety when using bacteria that produce cytotoxic payloads, we prevented bacterial spread to unintended locations by confining bacterial growth in a tumor-specific environment. We constructed hypoxia, pH, and lactate sensors and regulated bacterial growth based on sensor activation. To improve tumor specificity, we engineered gene circuits to sense hypoxia and lactate in an AND-logic gate manner. Leveraging the coculture platform, we characterized sensor activities and circuit functionalities in tumor spheroids. This engineered strain showed improved tumor specificity in an animal tumor model. Moving towards clinical applications, a key challenge is to ensure bacterial delivery to tumors without activating adverse immune responses. Approaches such as surface decoration can evade immune systems, but static modification may result in bacterial overgrowth. We developed a genetically-encoded microbial encapsulation system with a tunable, dynamic expression of capsular polysaccharides. We constructed an inducible gene circuit to regulate encapsulation, which exhibited tunable protection of the probiotic Escherichia coli Nissle 1917 (EcN) from host immune factors. By dynamically balancing low immunogenicity and protection, transient encapsulation increased the maximum tolerated dose of bacteria by approximately 10-fold when systemically injected in vivo. This strategy enhanced antitumor efficacy in multiple tumor models. Building on our work of therapeutic bacteria for cancer, we explored the use of engineered bacteria to infiltrate other pathogenic regions in the body. Specifically, we discovered that probiotic EcN colonizes granulomas, pathological features that develop at infection sites including tuberculosis. Granulomas share key similarities with solid tumors, including hypoxia and necrosis, and pose significant challenges for delivering therapeutic agents to eradicate the pathogen Mycobacterium tuberculosis within. We engineered the probiotics to locally produce antimicrobial proteins against Mycobacterium within granulomas. We developed a novel dual lysis mechanism to simultaneously enhance therapeutic protein release and limit bacterial overgrowth. To improve specificity, we constructed hypoxia-dependent bacterial growth coupled with quorum-mediated gene activation. Finally, we showed that our engineered probiotics reduced levels of Mycobacterium strains. Altogether, the presented technologies utilize a multiscale framework from circuit design to in vitro and in vivo models and advance bacteria as next-generation drug delivery vehicles capable of sensing and responding to diseases in the body.
690

Expression Of Lipase From Mycobacterium Tuberculosis In Nicotiana Tobacum And Lactuca Sativa Chloroplasts

Lloyd, Bethany 01 January 2012 (has links)
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (M. tuberculosis), is a global threat and the leading cause of death among individuals infected with HIV. TB treatment requires multi-drug cocktails, due to the increasing rates of drug resistance of the bacterium. With multi-drug cocktails, strains have been documented to be resistant to all major drugs in the fight against TB. Since the strains are drug resistant, it calls for an increasing need for vaccine and treatment development for the purpose of preventing and managing the disease. The most widely distributed vaccine against TB is Bacillus Calmette-Gue´rin (BCG). Apart from being ineffective in certain individuals, BCG offers only a limited timeframe of protection, is unable to serve as a booster for extending this timeframe and due to the intradermal route of administration requires costly refrigeration and syringes. LipY protein, a M. tuberculosis cell wall lipase, may play a potential role as not only a drug target but a potential vaccine antigen. LipY is known to be up-regulated during both active infection and dormancy. In a previous study, sera from TB patients had shown an IgG and IgM response against it. In this study transplastomic Lactuca sativa and Nicotiana tabacum plants were generated by transforming the chloroplasts through the particle delivery system with pLsDv-LipY and pLD-LipY vectors respectively. The vectors were flanked by the native trnI and trnA gene sequence to facilitate homologous recombination into the chloroplast genome. The vector also contained the 16S rRNA promoter, the selectable marker gene, aadA for specitinomycin resistance, the rbcL untranslated region, the LsPpsbA (PpsbA in N. tabacum) promoter, and LsTpsbA (tpsbA in N. tabacum) untranslated region. iv Site specific integration of the LipY gene into the chloroplast genome was confirmed by PCR. Homoplasmy of transplastomic plants was confirmed by Southern blot analysis. These plants showed normal growth and were fertile, producing seeds. Once germinated, these seeds did not show Mendelian segregation of the transgene. Immunoblot analysis was performed to analyze the expression of the LipY protein. A 40kDa protein was produced in E.coli, and a 25kDa protein was produced in chloroplasts; a cleaved product in chloroplasts is still valuable as an antigen for vaccine production. Future studies will include testing this chloroplast derived antigen in animal models for vaccine development.

Page generated in 0.0728 seconds