• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 301
  • 62
  • 51
  • 49
  • 20
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 888
  • 888
  • 187
  • 144
  • 76
  • 67
  • 62
  • 53
  • 51
  • 45
  • 44
  • 44
  • 43
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
761

Structural and Related Studies on Mycobacterial RecA and LexA

Chandran, Anu V January 2016 (has links) (PDF)
Genetic material of bacteria is subject to damage due to multitudinous factors, both extrinsic and intrinsic in origin. Mechanisms for the maintenance of genomic integrity are thus essential for a bacterium to survive. Bacterium also requires appropriate minor changes in the genetic material so as to adapt to the changing environments. Structural and related studies of two proteins from mycobacteria, one involved in recombinational DNA repair (RecA) and the other involved in SOS response which helps in adaptation to stress (LexA) form the subject matter of the thesis. The available literature on structural and related studies on RecA and LexA are reviewed in the introductory chapter. The action of RecA involves transition to an active filament formed in association with DNA and ATP, from an inactive filament in the absence of DNA. The structure of the inactive filament was first established in E. coli RecA (EcRecA). The interaction of RecA with non-hydrolysable ATP analogues and ADP were thoroughly characterised and the DNA binding loops were visualised in this laboratory using the crystal structures involving the proteins from Mycobacterium tuberculosis (MtRecA) and Mycobacterium smegmatis (MsRecA). A switch residue, which triggers the transformation of the information on ATP binding to the DNA binding regions, was identified. The 20 residue C-terminal stretch of RecA, which is disordered in all other relevant crystal structures, was defined in an MsRecA-dATP complex. The ordering of the stretch is accompanied by the generation of a new nucleotide binding site which can communicate with the original nucleotide binding site of an adjacent molecule in the filament. The plasticity of MsRecA and its mutants involving the switch residue was explored by studying crystals grown under different conditions at two different temperatures and, in one instance, at low humidity. The structures of these crystals and those of EcRecA and Deinococcus radiodurans RecA (DrRecA) provide information on correlated movements involving different regions of the molecule. MtRecA has an additional importance as an adjuvant drug target in Mycobacterium tuberculosis. Apart from recombination, another important property of RecA is its coprotease activity whereby it stimulates the inherent cleavage of a certain class of proteins. One of the substrates for the coprotease activity of RecA is LexA. LexA is a transcriptional repressor involved in SOS response in bacteria. LexA performs its function through an autoproteolysis stimulated by RecA, resulting in the derepression of the genes under its control. Structural studies on LexA from E. coli have shown that it has an N-terminal domain involved in binding to DNA and a C-terminal domain involved in catalysis and dimerisation. LexA mediated SOS response in bacteria has been shown in many cases to be responsible for the resistance gained by bacteria on treatment with antibiotics. In that respect, LexA is considered to be a potential drug target in Mycobacterium tuberculosis. Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions and reported in the thesis, provide insights into hitherto underappreciated details of molecular structure and plasticity (Chapter 2). In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the ‘switch’ residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M. smegmatis and E. coli, which exhibit concerted internal molecular mobility. Details of the interactions of ligands with the protein, characterised in the structures, could be useful for design of inhibitors against M. tuberculosis RecA. Eleven independent simulations, each involving three consecutive molecules in the RecA filament, carried out on the protein from M. tuberculosis, M. smegmatis and E. coli and their ATP complexes, provide valuable information which is complementary to that obtained from crystal structures, in addition to confirming the robust common structural frame work within which RecA molecules from different eubacteria function (Chapter 3). Functionally important loops, which are largely disordered in crystal structures, appear to adopt in each simulation subsets of conformations from larger ensembles. The simulations indicate the possibility of additional interactions involving the P-loop which remains largely invariant. The phosphate tail of the ATP is firmly anchored on the loop while the nucleoside moiety exhibits substantial structural variability. The most important consequence of ATP binding is the movement of the ‘switch’ residue. The relevant simulations indicate the feasibility of a second nucleotide binding site, but the pathway between adjacent molecules in the filament involving the two nucleotide binding sites appears to be possible only in the mycobacterial proteins. As described in Chapter 4, full length LexA, the N-terminal and C-terminal segments defined by the cleavage site, two point mutants involving changes in active site residues (S160A and K197A) and another involving change at the cleavage site (G126D) were cloned, expressed and purified. The wild type protein cleaves at basic pH. The mutants do not autocleave at basic pH even after incubation for 12 hours. The wild type and the mutant protein dimerise and bind DNA with equal facility. The C-terminal segment also dimerises, but has a tendency to form tetramer as well. The full length proteins including the mutants and the C-terminal segment crystallised. The structure of the crystals obtained for mutant G126D could not be solved. Each of the other crystals, four in number, contained only the catalytic core and a few residues preceding it, indicating that the full length proteins underwent cleavage, at the canonical cleavage site or elsewhere, during the long period involved in the formation of the crystals. Crystals obtained from the solutions of the wild type protein and the C-terminal segment contains dimers of the catalytic core. Crystals obtained using the active site mutants appear to contain different type of tetramers. One of them involves the swapping of the peptide segment preceding the catalytic core. Models of tetramerisation of the full length protein similar to those observed for the catalytic core are feasible. A model of a complex of MtLexA with M. tuberculosis SOS box could be readily built. In this complex, the mutual orientation of the two N-domains of the dimer is different from that in the EcLexA-DNA complex.
762

Development of nanobiosensors for phenolic endocrine disrupting compounds and anti- tuberculosis drugs

Sidwaba, Unathi January 2013 (has links)
>Magister Scientiae - MSc / Tuberculosis still remains one of the world’s killer diseases. Pyrazinamide (PZA) is one of the most commonly prescribed anti-tuberculosis (anti-TB) drugs due to its ability to significantly shorten the TB treatment period. However, excess PZA in the body caused hepatotoxicity and liver damage. This, together with the resistance of the bacteria to treatment drugs, poor medication and inappropriate dosing, contribute significantly to the high incidents of TB deaths and diseases (such as liver damage). This, therefore, calls for new methods for ensuring reliable dosing of the drug, which will differ from person to person due to inter-individual differences in drug metabolism. A novel biosensor system for monitoring the metabolism of PZA was prepared with a nanocomposite of multi-walled carbon nanotubes (MWCNTs), polyaniline (PANI) and cytochrome P450 2E1 (CYP2E1) electrochemically deposited on a glassy carbon electrode (GCE). The nanocomposite biosensor system exhibited enhanced electro-activity that is attributed to the catalytic effect of the incorporated MWCNTs. The biosensor had a sensitivity of 7.80 μA/ μg mL-1 PZA and a dynamic linear range (DLR) of 4.92 – 160 ng/mL PZA. Bisphenol A (BPA) is a hormone-disrupting chemical used in production of epoxy resins and polycarbonates, which produce various products used on a daily basis. However, BPA can leach out of plastic during normal use and cause health effects such as cancer or disrupt the endocrine system. Moreover, BPA has also been proven to degrade from the containers in landfills and accumulate in groundwater and streams, thereby, polluting the environment while destroying aquatic organisms. Therefore, this also calls for new selective and sensitive methods for the monitoring of BPA. A novel biosensor system for monitoring the oxidation of BPA was prepared from a nanocomposite of polyaniline, polymethyl methacrylate and titanium dioxide nanoparticles, also electrochemically deposited on the GCE. Biosensor fabrication was conducted by immobilization of the enzyme manganese peroxidase (MnP) iii onto the nanocomposite film. The nanobiosensor also revealed enhanced electro activity, attributed to the incorporation of TiO2 nanoparticles. The biosensor system had a sensitivity of 0.3 μA/nM and a detection limit of 0.12 nM. This detection limit falls within the range of the allowed daily intake of BPA as recommended by the Food and Drug Administration (FDA, USA) and other regulatory bodies.
763

Ethionamide pharmacokinetics in multidrugresistant tuberculosis patients with and without HIVinfection

Ezeukwu, Ifeoma Patricia January 2017 (has links)
Magister Pharmaceuticae - Mpharm / Many studies have investigated the pharmacokinetics (PK) of anti-tuberculosis drugs in tuberculosis patients. However, currently in South Africa, no studies have been done on ethionamide (ETH) PK in adult MDR-TB patients that are infected with HIV and those without HIV infection. Therefore, the objective of this current study was firstly, to find out ethionamide plasma concentration using the LC-MS method; secondly, to evaluate and compare the pharmacokinetics of ethionamide in MDR-TB patients infected with and without HIV infection; thirdly, to examine the effects of ARVs and kidney impairment on the PK of ethionamide and fourthly, to find out the consequence of sex and age on ETH PK parameters.
764

Integração de dados de expressão gênica global em tuberculose / Integration of data from global gene expression in tuberculosis

Ferreira, Carlos Diego de Andrade January 2011 (has links)
Submitted by Alessandra Portugal (alessandradf@ioc.fiocruz.br) on 2013-09-20T19:24:43Z No. of bitstreams: 1 Carlos Diego de Andrade Ferreira_Dissertação.pdf: 5365759 bytes, checksum: f39b0a04c2239947b512e3230e062333 (MD5) / Made available in DSpace on 2013-09-20T19:24:43Z (GMT). No. of bitstreams: 1 Carlos Diego de Andrade Ferreira_Dissertação.pdf: 5365759 bytes, checksum: f39b0a04c2239947b512e3230e062333 (MD5) Previous issue date: 2011 / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Vice Direção de Ensino, Informação e Comunicação. Rio de Janeiro, RJ, Brasil. / A tuberculose (TB) continua sendo uma das principais doenças associadas à morbidade e mortalidade no mundo, correspondendo a 1,7 milhões de mortes somente em 2009. Cerca de um terço da população mundial está infectada com seu agente etiológico, o Mycobacterium tuberculosis. Doenças infecciosas como a TB levam a modulações na expressão gênica do hospedeiro, que podem ser detectadas globalmente por ensaios de microarranjos de DNA. Estudos recentes in silico das respostas imunológicas moduladas em estudos de expressão gênica globais foram capazes de observar a diferença de expressão gênica de biomarcadores com potencial de diagnóstico e ferramentas de prognóstico na evolução da fase latente da tuberculose para a forma ativa da doença. Entretanto, até o momento nenhuma integração de diferentes estudos foi realizada. Os dados de microarranjos de DNA precisam ser submetidos a bancos de dados públicos, como o Gene Expression Omnibus (GEO), antes da publicação em artigos científicos, tornando-os disponíveis para uso por outros pesquisadores. A reanálise desses dados pode levar a novas descobertas, permitindo ainda a integração entre dados de diferentes experimentos ou até gerados em diferentes plataformas, como Affymetrix e Agilent. Nesta dissertação, onze conjuntos de dados referentes à infecção por M. tuberculosis, in vivo e in vitro, em hospedeiros humanos e murinos foram selecionados no GEO. Esses conjuntos de dados foram reanalisados e integrados para determinar quais os principais processos biológicos e vias de regulação gênica que estavam sofrendo alterações durante o processo infeccioso. Foram constatados que os processos biológicos relacionados com a resposta imune do hospedeiro, além de vias metabólicas relacionadas aos lisossomos, ao processo de apoptose, a receptores para ligação de citocinas, a receptores tipo NOD e a receptores tipo toll apresentavam alteração significativa nos conjuntos de dados reanalisados. Esses resultados apontam para utilização desses genes como biomarcadores de infecção e progressão a doença. Esses biomarcadores podem ser úteis no desenvolvimento de testes visando o diagnóstico e o prognóstico de tuberculose, bem como podem servir como alvos para futuras pesquisas no desenvolvimento de vacinas. / Tuberculosis (TB) remains a major disease associated with morbidity and mortality worldwide, accounting for 1.7 million deaths only in 2009. About a third of the world population is infected with its causative agent, Mycobacterium tuberculosis. Infectious diseases such as TB lead to modulation of host gene expression, which can generally be detected by DNA microarray assays. Recent studies of immune responses in silico modulated in global gene expression studies were able to observe the difference in gene expression of biomarkers with potential as diagnostic and prognostic tools in the evolution of the latent stage of tuberculosis to active disease. However, until now no integration of different studies has been performed. The DNA microarray data must be submitted to public databases, such as Gene Expression Omnibus (GEO), before the publication of scientific articles, making them available for use by other researchers. A reanalysis of these data can lead to new discoveries, while allowing the integration of data from different experiments or even generated in different platforms such as Affymetrix and Agilent. In this thesis, eleven data sets describing in vivo and in vitro infection with M. tuberculosis in human or murine hosts were selected in GEO. These data sets were reviewed and integrated to determine which biological processes and pathways were undergoing changes during the infectious process. It has been found that biological processes related to the host immune response, and metabolic pathways related to lysosomes, the process of apoptosis, cytokines-cytokines binding receptors, NOD like receptors and toll like receptors had a significant change in reanalyzed data sets. These results points to the use of these genes as biomarkers of infection and progression to disease while may serve as diagnostic and prognostic tests as well as targets for future research concerning the development of vaccines.
765

Avaliação da reação em cadeia da polimerase para identificação do complexo Mycobacterium tuberculosis em cultura de escarro no meio BACTEC 12B

Gouveia, Ana Cláudia Carvalho 27 September 2006 (has links)
Made available in DSpace on 2016-12-23T13:55:57Z (GMT). No. of bitstreams: 1 dissertacao de mestrado Ana Claudia Gouveia.pdf: 545544 bytes, checksum: ef710da8f0ab0b9735e6488225cd69ff (MD5) Previous issue date: 2006-09-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Use of the most rapid and reliable laboratory tests for Mycobacterium tuberculosis detection and identification is important for tuberculosis (TB) control. Diagnostic techniques based on molecular biology methods are able to dramatically reduce the time of detection as well as increase the sensitivity for detecting the bacilli. A polymerase chain reaction DNA amplification method for direct detection of Mycobacterium tuberculosis Complex (PCR IS6110) in BACTEC 12B broth cultures was evaluated. A total of 107 sputum samples were processed by standard methods, and then inoculated into Ogawa slants and BACTEC 12B vials. The PCR assay was used on BACTEC 12B broth cultures with a growth index (GI) of equal to or greater than 30. Molecular results were compared to those obtained by phenotypic identification methods. Of the 107 broth cultures evaluated, 90 were all culture and PCR positive for M. tuberculosis. Except for one, all cultures (n = 8) which grew mycobacteria other than M. tuberculosis were PCR negative. In two cultures which grew both mycobacteria and other organisms than acid-fast bacilli a phenotypic identification was not possible, and both of them were PCR negative. The remaining seven cultures that did not contain mycobacteria were PCR negative. Of particular interest were all 44 cultures positive from smear-negative sputum specimens and three contaminated BACTEC 12B broth cultures yielding mycobacterial growth which a M. tuberculosis Complex, which were successfully identified by PCR, resulting in a mean time to identify M. tuberculosis of 5,5 and 16 days before phenotypic identification, respectively. In light of an overall sensitivity and specificity of 100% and 87,5%, respectively, coupled with the ability to identify the bacilli days or weeks before other methods can be applied, we conclude that PCR might prove to be a rapid alternative for identification of M. tuberculosis Complex in culture, even in the context of paucibacillary patients. / A utilização de métodos laboratoriais rápidos para a detecção e identificação do Mycobacterium tuberculosis é crucial para a prevenção e o controle da tuberculose. Embora técnicas baseadas na amplificação de ácidos nucléicos apresentem alta sensibilidade e reduzam consideravelmente o tempo de identificação deste bacilo, há uma grande carência de estudos sobre a avaliação de primers específicos para detecção de M. tuberculosis em meios de culturas líquido (BACTEC 12B e ou MGIT) em condições de rotina diagnóstica. Diante deste fato, propusemo-nos a avaliar a reação em cadeia da polimerase utilizando um par de primers específico para a IS6110 (PCR IS6110), para detecção do Complexo Mycobacterium tuberculosis em culturas em meios BACTEC 12B. Um total de 107 amostras de escarro foi processado e inoculado em meio de Ogawa e BACTEC 12B. Uma alíquota dos cultivos em meio 12B que apresentaram índice de crescimento (IC) igual ou maior a 30 foi submetida à amplificação através da PCR IS6110. Os resultados do método molecular foram comparados à identificação obtida através de métodos fenotípicos. Das 107 culturas avaliadas, 90 foram identificadas através dos métodos fenotípico e molecular como M. tuberculosis, e todas as culturas (n = 8) com crescimento de outras micobactérias que não M. tuberculosis apresentaram resultado de PCR negativo, com exceção de uma amostra. A identificação fenotípica não foi possível em dois cultivos que apresentaram crescimento concomitante de micobactérias e microrganismos contaminantes, sendo que estas duas culturas apresentaram resultado negativo de PCR. Os resultados das demais sete culturas foram negativos por ambos os métodos. A identificação molecular do M. tuberculosis foi especialmente relevante em 44 culturas provenientes de escarros que apresentaram baciloscopia negativa e em três culturas de BACTEC 12B contaminadas, sendo que, em média, a identificação ocorreu 5,5 e 16 dias, respectivamente, mais rápido quando comparada à identificação fenotípica. Os resultados obtidos em nosso estudo demonstram a eficácia da PCR IS6110 na identificação rápida de M. tuberculosis em cultivos de meios 12B (100% de sensibilidade e 87,5% de especificidade), e evidenciam a relevância da técnica no diagnóstico precoce da tuberculose pulmonar, sobretudo em pacientes paucibacilíferos.
766

Protein-protein Interactions of Bacterial Topoisomerase I

Banda, Srikanth 29 June 2017 (has links)
Protein-protein interactions (PPIs) are essential features of cellular processes including DNA replication, transcription, translation, recombination, and repair. In my study, the protein interactions of bacterial DNA topoisomerase I, an essential enzyme, were investigated. The topoisomerase I in bacteria relaxes excess negative supercoiling on DNA and maintains genomic stability. Investigating the PPI network of DNA topoisomerase I can further our understanding of the various functional roles of this enzyme. My study is focused on topoisomerase I of Escherichia coli and Mycobacterium smegmatis. Firstly, we have explored the biochemical mechanisms for an interaction between RNA Polymerase, and topoisomerase I in E. coli. Molecular docking and molecular dynamic simulations have predicted that the interactions are mediated through electrostatic, and hydrogen bonding. The predicted Lysine residues (K627, K664) of topoisomerase I that are involved in the electrostatic interactions were mutated to Alanine, and its effect on the binding efficiency with RNA polymerase was reported. In a separate study, PPI partners of topoisomerase I in mycobacteria were identified. Knowledge gained from the study can provide valuable insights into the physiological functions of a validated drug target, DNA topoisomerase I, in pathogenic mycobacteria. Co-immunoprecipitation and pull-down assays were coupled to mass spectrometry for identification of the protein partners of mycobacterial topoisomerase I. The study has identified RNA polymerase, and putative helicases (DEAD/DEAH BOX helicases) as potential protein partners of mycobacterial topoisomerase I. My results indicated that the tail region of the CTD-topoisomerase I was required for direct physical interaction with the RNAP beta’ subunit. My studies have also verified the physiological relevance of the topoisomerase I - RNA polymerase interactions for survival under antibiotic, and oxidative stress. Lastly, I report a direct physical interaction between E. coli topoisomerase I and RecA by pull-down assays. Previous studies have shown that RecA, a DNA repair protein, can stimulate the relaxation activity of E. coli topoisomerase I. Our new results showed that the stimulatory effect can be attributed to the physical interaction of topoisomerase I with RecA.
767

An Integrated Systems Biology Approach to Study Drug Resistance in Mycobacteria

Padiadpu, Jyothi January 2015 (has links) (PDF)
Emergence of drug resistance is a major problem in the treatment of many diseases including tuberculosis. To tackle the problem, it is essential to obtain a global perspective of the molecular mechanisms by which bacteria acquire drug resistance. Systems biology approaches therefore become necessary. This work aims to understand pathways to drug resistance and strategies for inhibition of the resistant strains by using a combination of experimental genomics and computational molecular systems approaches. Laboratory evolution of Mycobacterium smegmatis MC2 155 by treatment with isoniazid (INH), a front-line anti-tubercular drug, resulted in a drug-resistant strain (4XR), capable of growth even at about 10-times the minimum inhibitory concentration of the drug. Whole genome sequence of the 4XR was determined, which indicated only 31 variations in the whole genome, including 3 point mutations, 17 indels and 11 frame-shifts. Two mutations were in proteins required for the pharmacological action of the drug, albeit in regions distant from the drug binding site. The variations however were insufficient to explain the observed resistance to isoniazid. For a better understanding of the global changes associated with drug resistance, whole genome-wide gene expression data was obtained for the resistant strain and compared with that of the WT strain. 716 genes were found to be differentially regulated in 4XR, spanning different biochemical, signaling and regulatory pathways. From this, some explanations for the emergence of drug resistance were obtained, such as the up-regulation of the enzymes in the mycolic acid biosynthesis pathway and also of the drug efflux pumps. In addition, enrichment analysis indicated that up-regulated genes belong to functional categories of response to stress, carbohydrate metabolism, oxidation-reduction process, ion transport, signaling as well as lipid metabolism. The differential gene regulations seemed to be partially responsible for conferring the phenotype to the organism. Alterations in the metabolic pathways in 4XR were characterized using the phenotypic microarray technology, which experimentally scanned the respiratory ability of the resistant bacteria under 280 different nutrient conditions and 96 different inhibitors. Phenotypic gain, where the resistant strain grows significantly better than the wild type and phenotypic loss, where the growth of the resistant strain is compromised as compared to the sensitive strains were derived from the comparison of the phenotypic responses. Differences in survival ability and growth rates in different nutrient sources in the resistant phenotype as compared to the wild type were observed, suggesting rewiring in the metabolic network of the drug-resistant strain. In particular, the pathways of central carbon metabolism and amino acid biosynthesis exhibit significant differences. The strain-specific metabolic pathway differences may guide in devising strategies to tackle the drug-resistant strains selectively and in a rational manner. Scanning electron microscopy indicated the morphology of the drug-resistant strains to be significantly altered, as compared to the control drug-sensitive strain. It is well-known that isoniazid acts by inhibiting mycolic acid biosynthesis. The pathway turns out to be a target for many other anti-tubercular drugs also, since mycolic acids are major components of the cell wall. It is therefore important to understand what changes occur in the mycolic acid and the associated pathways in the drug-resistant variety so that strategies to tackle the latter can be chosen more judiciously. The lipidome of the cell wall was therefore quantitatively characterized by mass spectrometric analyses, which indeed confirmed that the 4XR strain has a significantly different composition profile. Among the six categories of lipids, the members of the glycerophospolipids category were abundant while the fatty acyls, polyketides and saccharolipids were lower in the 4XR strain as compared to the WT. The lipidomic data derived from the cell wall of INH-resistant strain shows that it results in the mycolic acid pathway function restoration, which would otherwise be lost upon drug exposure in the sensitive strain. Understanding the precise changes that occur in the lipidome in the drug-resistant strains is expected to be useful in developing new ways to tackle resistance. Next, to understand the implications of altered gene expression profiles, protein-protein interaction networks are constructed at a genome-scale that captures various structural and functional associations mediated by proteins in the mycobacterial cell. Using transcriptome data of 4XR, a response network is computed. Using an algorithm previously developed in the laboratory, the networks have been mined to identify highest differential activity paths and possible mechanisms that are deployed by the cells leading to drug resistance. Known resistance mechanisms such as efflux, cytochromes, SOS, are all seen to constitute the highest activities for achieving drug resistance in 4XR. Interestingly, such paths are seen to form a well-connected subnet, indicating such differential activities to be orchestrated. This clearly shows that multiple mechanisms are simultaneously active in the 4XR and may together generate drug resistance. Mechanisms of detoxification and antioxidant responses are seen to predominate in the 4XR subnet. Overall the analysis provides a shortlist of strategies for targeting the drug resistant strain. Next, the phenotypic microarray platform was used for screening for growth in Msm in the presence of various drugs. Data analysis and clustering resulted in identification of conditions that lead to phenotypic gain or loss in the 4XR as well as those that lead to differential susceptibility to various drugs. Drugs such as cephalosporins, tobramycin, aminotriazole, phenylarsine oxide, vancomycin and oxycarboxin were also found to inhibit growth in the resistant strain selectively. In other words, the 4XR is found to be collaterally sensitive to these drugs. The top-net formed by the highest differential activity paths, identified from the network described earlier has already indicated the involvement of proteins that generate antioxidant responses. Insights from the two methods, first from the targeted approach and second, from the phenotypic discovery approach were combined together to select only those compounds to which the 4XR strain was collaterally sensitive and targeted proteins responsible for antioxidant responses. These compounds are vancomycin, phenylarsine oxide, ebselen and clofazimine. These were further tested against the virulent M. tuberculosis H37Rv strain in a collaborator‘s laboratory. 3 of these compounds such as vancomycin, ebselen and phenylarsine oxide were found to be highly active in combinations with isoniazid against all tested Mtb strains, showed high levels of inhibition against H37Rv and 3 different single drug resistant, MDR and XDR strains. Moreover, they were observed to be highly potent when given in combinations. Clofazimine on the other hand, in combination with isoniazid showed activity but no significant synergy in the virulent drug-resistant strains of M. tuberculosis though synergistic to the sensitive strain. Thus, experiments with M. tuberculosis provide empirical proof that four different compounds, all capable of blocking antioxidant responses, are capable of inhibiting growth of single-, multiple- and extremely-drug-resistant clinical isolates of M. tuberculosis. Using transcriptome data from literature for M. tuberculosis exposed to six different drugs, similar drug specific response networks were constructed. These networks indicate differences in the cellular response to different drugs. Interestingly, the analysis suggests that different drug targets and hence different drugs could trigger drug resistance to various extents, leading to the possibility of prioritizing drug targets based on their resistance evolvability. An earlier study from the laboratory suggested the concept of target-co-target pairs, where-in the co-target could be a key protein in mediating drug resistance for that particular drug and hence for its target protein. Top ranked hubs in multiple drug specific networks such as PolA, FadD1, CydA, a monoxygenase and GltS, can possibly serve as co-targets. Simultaneous inhibition of the co-target along with the primary target could lower the chances of emergence of drug resistance. Such analyses of drug specific networks provide insights about possible routes of communication in the cell leading to drug resistance and strategies to inhibit such communication to retard emergence of drug resistance. Since mutations in the target proteins are known to form an important mechanism by which resistant strains emerge, an understanding of the nature of mutations in different drug targets and how they achieve resistance is crucial. Sequence as well as structural bases for the resistance from known drug-resistant mutants in different drug targets is deciphered and then positions amenable to such mutations are predicted in each target. Mutational indices of individual residues in each target structure are computed based on sequence conservation. Saturated mutagenesis is performed in silico and structural stability analysis of the target proteins has been carried out. Critical insights were obtained in terms of which amino acid positions are prone to acquiring mutations. This in turn suggests interactions that are not desirable, thus can be translated into guidelines for modifying the existing drugs as well as for designing new drugs. Finally, the work presented here describes application of the systems biology approaches to understand the underlying mechanisms of drug resistance, which has provided insights for drug discovery on multiple fronts though target identification, target prioritization and identification of co-targets. In particular, the work has led to a rational exploration of collateral drug sensitivity and cross-resistance of the drug-resistant strain to other compounds. Combinations of such compounds with isoniazid were first identified in the M. smegmatis model system and later tested to hold good for the virulent M. tuberculosis strain, in a collaborative study. The combinations were found to be active against three different clinical drug-resistant isolates of M. tuberculosis. Therefore, this study not only reveals the global view of resistance mechanisms but also identifies synergistic combinations of promising drug candidates based on the learnt mechanisms, demonstrating a possible route to exploring drug repurposing. The combinations are seen to work at a much reduced dosage as compared to the conventional tuberculosis drug regimens, indicating that the toxicity and any associated adverse effects may be greatly reduced, suggesting that the combinations may have a high chance to succeed in the next steps of the drug discovery pipeline.
768

Estrutura cristalográfica da Purina nucleosídeo foslorilase do Mycobacterium tuberculosis

Silva, Diego Oliveira Nolasco da [UNESP] 18 August 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2005-08-18Bitstream added on 2014-06-13T20:29:19Z : No. of bitstreams: 1 silva_don_me_sjrp.pdf: 1054782 bytes, checksum: 832047dd271670cc0bc6debdbd5dc8d8 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A Purina Nucleosídeo Fosforilase (PNP) catalisa a fosforólise de nucleosídeos de purina para suas respectivas bases e açucares (ribose ou desoxirribose) 1-fosfato. A PNP desempenha uma função central no metabolismo das purinas, normalmente operando na via de recuperação do DNA das células. Mais ainda, a PNP cliva ligações glicosídicas com inversão da configuração para produzir a-ribose 1-fosfato. Acredita-se que no organismo do Mycobacterium tuberculosis a PNP desempenha tarefas similares, o que levanta o interesse em desenvolver ciência que dê suporte para o desenvolvimento de drogas baseadas na estrutura desta proteína. A proteína é um homotrímero simétrico com um arranjo triangular das subunidades, similar às PNPs triméricas de mamíferos. Cada monômero consiste de um enovelamento a/ß formado por onze fitas ß circundadas por oito hélices a. O estudo desta PNP visa proporcionar comparações com outras estruturas, na intenção de identificar as bases estruturais de possíveis diferenças ou similaridades funcionais entre esta e outras PNPs, num esforço para desenvolver pesquisa que dê suporte para o desenho de novas drogas mais seletivas e poderosas contra a tuberculose. / The Purine nucleoside phosphorylase (PNP) catalyses the phosphorolysis of purine nucleosides to corresponding bases and ribose 1-phosphate. PNP plays a central role in purine metabolism, normally operating in the purine salvage pathway of cells. Moreover, PNP cleaves glycosidic bond with inversion of configuration to produce á-ribose 1-phosphate. It is believed that in the MtPNP is responsible for the same labor in the Mycobacterium tuberculosis organism, which arouses the interest in developing science for giving support to the development of structure based drugs. The protein is a symmetrical homotrimer with triangular arrangement of the subunits, similar to the trimeric mammalian PNPs. Each monomer consist of a á/â folding formed by eleven â sheet surrounded by eight á helices. The study of this PNP aims the possibility of caring out comparisons with other structures, in order to identify the structural basis of possible differences or functional similarities between this and other PNPs, in an effort to develop research which gives support to the design of more selective and powerful new drugs against tuberculosis.
769

Estudos estruturais da Purina Nucleosídeo Fosforilase do Mycobacterium tuberculosis complexada com ligantes

Souza, Marcos Michel de [UNESP] 23 February 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-02-23Bitstream added on 2014-06-13T20:10:04Z : No. of bitstreams: 1 souza_mm_me_sjrp.pdf: 836354 bytes, checksum: 11c4cceceb0b5cfc0fbfbee0acea3de5 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / De acordo com a OMS, a tuberculose mata 5000 pessoas por dia, e se não controlada, são estimados 35 milhões de novos casos nos próximos vinte anos. A alta susceptibilidade dos infectados por HIV para a tuberculose, bem como a proliferação da tuberculose multidroga-resistente (MDR), tem criado um grande interesse mundial de expansão nos programas atuais de pesquisas sobre a tuberculose. A Purina Nucleosídeo Fosforilase do Mycobacterium tuberculosis (MtPNP) é um potencial alvo para novas drogas anti-tuberculose visto que é responsável pela síntese de novo de ribonucleotídeos de purina. A Inibição específica da PNP poderia potencialmente levar o M. tuberculosis ao estado latente. O objetivo desde trabalho é resolver a estrutura da MtPNP complexada com adenina, e analisar as interações com os ligantes. A MtPNP foi cristalizada utilizando condições experimentais descritas posteriormente, e o ligante (adenina) foi adicionado por soaking. Os dados de difração de raios X foram coletados no detector CCD utilizando fonte de radiação síncotron (Laboratório Nacional de Luz Síncrotron, LNLS, Campinas, Brazil). O programa MOSFLM foi utilizado para o processamento, e os dados foram escalonados através do programa SCALA, apresentando o grupo espacial ortorrômico P21212 (a=118,96Å, b=134,65 Å, c=44,42 Å). O cristal foi determinado utilizando o método de substituição... / In according to the WHO, the tuberculosis kills 5000 people every day, if does not controlled, are esteemed 35 millions of new cases in next 20 years. The high susceptibility of human immunodeficiency virus infected persons to the disease and the proliferation of multidrug-resistant (MDR) strains have created a worldwide interest in expanding current programs in tuberculosis research. The Purine Nucleoside Phosphorylase from Mycobacterum tuberculosis (MtPNP) is a potential target for new drug anti-tuberculosis, whereas is responsible for de novo synthesis of purine ribonucleotides. The specific inhibition of M. tuberculosis PNP could potentially lead to the latent state of M. tuberculosis. The objective of this work is to solve the structure from MtPNP complexed with adenine, and to analyze their interactions with the ligand. MtPNP was crystallized using the experimental conditions described elsewhere, and the ligand (adenine) was added by soaking. The X-ray diffraction data were collected on a CCD detector using synchrotron radiation source (Laboratório Nacional de Luz Síncrotron, LNLS, Campinas, Brazil). It was used the MOSFLM program to processing, and the data were scaled through the program SCALA, presenting orthorhombic spatial group P21212 (a=118,96Å, b=134,65 Å, c=44,42 Å). The crystal was determined by molecular replacement methods using the program AMoRe. The final model has Rfree and Rfactor of 23.87% and 17.51% respectively, and maximum resolution of 1.86Å. It was observed a large...(Complete abstract click electronic access below)
770

Unraveling the Evolutionary Advantages of Crosstalk Between Two-Component Signalling Systems of M tuberculosis

Bharadwaj, Vemparala January 2017 (has links) (PDF)
M. tuberculosis (Mtb) senses and responds to changes in its environment primar-ily through two-component signalling systems (TCSs). Each TCS contains a trans-membrane histidine kinase (HK ) protein and a cytoplasmic response regulator (RR) protein. HK detects a stimulus and gets phosphorylated. It then binds and transfers the phosphoryl group to the RR of the same TCS. Activated RR then triggers gene ex-pression, including upregulation of the HK and RR involved, eliciting responses that are essential for the bacterium to adapt. Though di erent TCSs detect distinct stimuli, the binding regions of the HK s and RRs share signi cant similarity. This raises the possibil-ity of crosstalk, where HK s dissipate signals to RRs that do not belong to the same TCS. Studies have argued that such dissipation of signals impairs the fitness of the organism, as it decreases the output levels as well as triggers unwanted responses. In contrast, a recent experimental study has discovered that TCSs of Mtb share extensive crosstalk, violating the widely accepted specificity paradigm. In this study, we have attempted to unravel the evolutionary underpinnings of this extensive crosstalk observed in Mtb. We hypothesised that such crosstalk may be advantageous in programmed environments, where there are well-defined sequences of stimuli. In such situations, crosstalk can up-regulate HK s and RRs of non-cognate TCSs. This up-regulation primes the latter TCSs for upcoming signals, increasing their sensitivity. We constructed a mechanistic model of the functioning of TCSs and a fitness variable to qualitatively measure the response of a TCS to a signal, to test the hypothesis. We performed population genetics simulations of the evolution of phenotypes of different crosstalk patterns. We found that in a random environment, the phenotype without any crosstalk is selected over time, which is in agreement with prevalent arguments in favour of specificity of TCSs. But when the environment is programmed, the phenotype with a crosstalk pattern mirroring the pattern of stimuli dominates the population. Finally, we found evidence for the evolutionary preference to preserve crosstalk in gene sequences of HK s and RRs encoded in Mtb. We found that the binding domains of HK s and RRs, which were predicted to share crosstalk, are under greater pressure to be similar than those domains which do not crosstalk. Our study thus provides a plausible explanation of the unexpected presence of crosstalk in Mtb. Since these cross-interactions aid the pathogen to adapt in the host, inhibitors of such interactions are likely to have therapeutic potential.

Page generated in 0.0853 seconds