• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 35
  • 8
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 165
  • 96
  • 93
  • 36
  • 35
  • 35
  • 32
  • 31
  • 30
  • 26
  • 21
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

PhoP-regulated genes contribute to Mycobacteria tuberculosis-induced burst size necrosis in macrophages

Kativhu, Chido L. 01 February 2021 (has links)
Tuberculosis (TB) is primarily a pulmonary disease caused by Mycobacterium tuberculosis (Mtb). Mtb is highly infectious, but studies have shown that only 5–15% of Mtb-infected individuals develop TB disease. The Bacille Calmette-Gu.rin (BCG) vaccine is the only commercially available Mtb vaccine, but its efficacy varies based on the strain used. The Mtb PhoPR-mutant variant, MTBVAC, has been tested as a possible attenuated live vaccine against Mtb. Although it has successfully conferred durable CD4+ T-cell responses in infants, it has also resulted in adverse effects. Our goal is to identify PhoPR-regulated gene(s) that mediate Mtb-induced burst size necrosis in infected cells. PhoPR is a two-component system in mycobacteria. PhoR responds to environmental cues, such as changes in pH, and phosphorylates the PhoP transcription factor, which then activates or suppresses the expression of approximately 40 Mtb genes. The Mtb PhoPR-mutant strain is able to replicate in infected macrophages, but it does not induce the horizontal spread of Mtb to other immune cells. Our lab has previously shown that virulent, cytopathic strains of Mtb, such as H37Rv, suppress early apoptosis, have faster replication rates in macrophages, and trigger cell death at a lethal load threshold of approximately 25 bacteria. Cell death of infected macrophages primarily occurs via necrosis, which involves nuclear pyknosis without DNA fragmentation and general disruption of lipid bilayer membranes. Viable bacilli are released to infect other macrophages and neutrophils recruited to the developing TB lesion. Here, we show that PhoP contributes to burst size necrosis in macrophages and that the PhoP-regulated genes, fadD21 and pks3, are potential drivers of this necrosis. FadD21 and pks3 are involved in the generation of diacyl trehalose/penta-acyl trehalose (DAT/PAT) for cell wall synthesis, suggesting that Mtb cell wall composition may determine virulence. Therefore, we have uncovered potential targets for early intervention or vaccinations to avoid granuloma formation or tissue damage in response to Mtb-induced macrophage necrosis.
72

Investigação de análogos de curcumina como agentes contra fungos causadores de dermatomicoses /

Pattini, Veridianna Camilo. January 2020 (has links)
Orientador: Luis Octavio Regasini / Resumo: As micoses superficiais e cutâneas são infecções fúngicas que acometem a camada mais externa do estrato córneo da pele e seus anexos. São as micoses mais frequentes dentre todas as infecções fúngicas e estão distribuídas por todo o mundo, afetando todas as faixas etárias. O impacto primário destas micoses é seu aspecto visual com estética negativa. Contudo, não se restringem apenas ao aspecto estético, vindo a ser um grave problema de saúde na população neonatal, senescente e de imunocomprometidos. Além disso, muitos fármacos exibem toxicidade alta, interações medicamentosas e alto custo econômico. As recidivas por meio do tratamento convencional costumam ser frequentes, as quais podem ser ocasionadas por cepas resistentes. Esse cenário torna premente a busca por antifúngicos inovadores. No presente estudo avaliou-se atividade antifúngica de 19 curcuminoides, provenientes da composteca do Laboratório de Antibióticos e Quimioterápicos (LAQ), contra fungos filamentosos dermatofíticos dos gêneros Trichophyton, Epidermophyton e Microsporum e leveduriformes (Candida spp.), de cepas de referência ATCC e de isolados clínicos, provenientes da coleção do Laboratório de Microbiologia da Faculdade de Medicina de São José do Rio Preto (FAMERP), bem como avaliou-se toxicidade dos curcuminoides mais potentes contra células de queratinócitos humanos (HaCat) e larva G. mellonella. Afim de verificar a atividade antifúngica dos compostos, foram determinados os valores: Concentração Inibitória ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Superficial and cutaneous mycoses are fungal infections that affect the outermost layer of the stratum corneum of the skin and its attachments. They are the most frequent mycoses among all fungal infections and are distributed all over the world. The first impact of these mycoses is their visual appearance with a negative aesthetic. However, they are not restricted to the aesthetic aspect, becoming a serious health problem in the neonatal, senescent and immunocompromised population. In addition, many drugs exhibit high toxicity, drug interactions and high economic cost. Relapses through conventional treatment are often frequent, which can be caused by resistant strains. This scenario demands the development of potent but safer compounds. Herein, we described the antifungal activity of a novel curcuminoid against dermatophyte and Candida species. A series of nineteen curcuminoid analogs was submitted to antifungal assay to assess MIC (minimum inhibitory concentration) and MFC (minimum fungicidal concentration) determined by the broth microdilution method. First, all compound were tested at 31.2 µg mL-1 in order to select the most active compound. The compound 3, 3'-Dimethoxycurcumin (DMC) showed the highest growth-inhibitory activity the largest spectrum of action against dermatophyte clinical isolates and reference strains of Candida tropicalis ATCC and Trichophyton rubrum CBS, with MIC values range of 1.9±31.2 µg mL-1. DMC exhibited fungistatic activity. Inverted microscope ... (Complete abstract click electronic access below) / Mestre
73

The Inhibitory Effects of an Antimicrobial Gel on the Staphylococcus Species

Trinkle, Mara 01 August 2020 (has links)
The prevalence of antibiotic resistant bacteria has made the choices for topical treatments for patients who experience burns wounds extremely limited. The Staphylococcus genus is naturally occurring in and on the human body but can become harmful once it enters the bloodstream. A novel antimicrobial gel has been shown by our laboratory to inhibit both the planktonic growth and biofilm formation of Staphylococcus aureus in previous studies. The antimicrobial gel is made of seven natural compounds including antioxidants (vitamin C and E). We wanted to examine the effects of the antimicrobial gel on numerous other Staphylococcal species because it is prevalent on the body and becomes harmful when the immune system is compromised. The species tested were Staphylococcus capitis, Staphylococcus epidermidis, and Staphylococcus saprophyticus. A planktonic broth challenge test, biofilm attachment test, and biofilm maturation test were all performed in order to test this hypothesis. These tests showed a significant inhibition of the Staphylococcus species as a result of the effects of the antimicrobial gel. The antimicrobial gel inhibited the attachment, maturation, and growth of Staphylococcus colonies in a 10% antimicrobial gel solution. The antimicrobial gel shows promise as an option in treating burn patients and should be considered in further testing for its uses in other areas of medicine.
74

Characterization of the caspase-3 cleavage motif of the Salmonella Typhimurium effector protein SifA and its role in pathogenesis

Patel, Samir 16 November 2018 (has links)
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative anaerobe that induces severe inflammation resulting in gastroenteritis. In the case of S. Typhimurium infection, induction of an inflammatory response has been linked to its primary virulence mechanism, the type III secretion system (T3SS). The T3SS secretes protein effectors that exploit the host’s cell biology to facilitate bacterial entry and intracellular survival, and to modulate the host immune response. One such effector, SifA, is a bi-functional T3SS effector protein that plays an important role in Salmonella virulence. The N-terminal domain of SifA binds SifA-Kinesin-Interacting-Protein (SKIP), and via an interaction with kinesin, forms tubular membrane extensions called Sif filaments (Sifs) that emanate from the Salmonella Containing Vacuole (SCV). The C-terminal domain of SifA harbors a WxxxE motif that functions to mimic active host cell GTPases. Taken together, SifA functions in inducing endosomal tubulation in order to maintain the integrity of the SCV and promote bacterial dissemination. Since SifA performs multiple, unrelated functions, the objective of this study was to determine how each functional domain of SifA becomes processed. In the present study, we demonstrate that a linker region containing a caspase-3 cleavage motif separates the two functional domains of SifA. To test the hypothesis that processing of SifA by caspase-3 at this particular site is required for function and proper localization of the effector protein domains, we developed two tracking methods to analyze the intracellular localization of SifA. We first adapted a fluorescent tag called phiLOV that allowed for T3SS mediated delivery of SifA and observation of its intracellular colocalization with caspase-3. Additionally, we created a dual-tagging strategy that permitted tracking of each of the SifA functional domains following caspase-3 cleavage to different subcellular locations. The results of this study reveal that caspase-3 cleavage of SifA is required for the proper localization of functional domains and bacterial dissemination. Considering the importance of these events in Salmonella pathogenesis, we conclude that caspase-3 cleavage of effector proteins is a more broadly applicable effector processing mechanism utilized by Salmonella to invade and persist during infection.
75

Regulating rsmA Expression in Pseudomonas aeruginosa

Stacey, Sean D 01 August 2013 (has links) (PDF)
Pseudomonas aeruginosa, a Gram-negative bacillus, commonly infects immunocompromised individuals and uses a variety of virulence factors to persist in these hosts. The posttranscriptional regulator, RsmA, plays a role in the expression of many virulence factors in P. aeruginosa. RsmA up regulates virulence factors used in colonizing hosts. However, regulation of rsmA is not well elucidated. Transposon mutagenesis was performed on P. aeruginosa containing a transcriptional rsmA-lacZ fusion to answer this question. Mutants were screened via β-galactosidase assay and transposon insertions identified via arbitrary PCR. A probable MFS transporter, we named mtpX, was one significant transposon mutant identified. A ΔmtpX mutant containing the rsmA-lacZ transcriptional fusion was constructed to confirm our results. Further analysis of rsmA, looking at RNA and protein levels, revealed varying results in nonmucoid versus mucoid backgrounds. Phenotypic assays were performed to characterize this unknown transporter and develop a putative mechanism as to how MtpX affects rsmA expression.
76

Identification of AlgZ Regulator, PA2771, and Effects on Motility and Virulence in P. aeruginosa

hughes, abigail, Pritchett, Chris, Dr. 04 April 2018 (has links)
Pseudomonas aeruginosa is an important nosocomial infection that has the potential to infect almost every tissue of the human body though it is mainly opportunistic, due to the organism’s intrinsic antibiotic resistance is becoming increasingly difficult to treat. Two-component systems (TCS) rely on a signal sensed from the outside environment by the sensor histidine kinase to initiate phosphotransfer to the response regulator, which may then regulate virulence factors in the organism in response to a changing environment. One important two-component system in P. aeruginosa is the AlgZ/R system. AlgZ, the sensor histidine kinase, has been shown to be co-transcribed with its’ response regulator, AlgR, to affect a myriad of virulence factors, including those related to motility. Pseudomonas species is capable of four types of motility: twitching, swimming, swarming, and gliding. Twitching motility is achieved through the expression of the FimU operon and Type VI pilli, and is most useful when attaching to a solid surface in the initial step of pathogenesis: colonization. Conversely, the swimming phenotype relies on the production of a single polar flagellum upon the activation of the FleQ operon, and allows the organism to move through a fluid environment. A previously unidentified regulator of AlgZ, but not AlgR, has been identified via transposon mutagenesis screening, PA2771, which has a GGDEF domain and predicted diguanylate cyclase activity. The mechanism of PA2771’s action within P. aeruginosa has not been previously studied. The nonpolar deletion mutant was first characterized via various phenotypic assays (including biofilm, rhamnolipid, swimming, and swarming assays) and transcriptional fusions to propose a mechanism in which this predicted diguanylate cyclase (DGC) works with AlgZ to determine the switch in motility from twitching to swimming. When PA2771 is present and active in the cell, cyclic di-GMP levels should be high, leading to the production of Type VI pilli and the upregulation of the FimU operon. In the PA2771 mutant a significant decrease in the expression of the FimU operon, and an increase in the expression of the flagellar genes. Subsequent alterations in swimming and swarming phenotypes were observed, as well as the restoration of these effects via complementation studies. Overexpression of AlgZ in the 2771 mutant showed a restoration of AlgZ expression in the nonmucoid background, and the predicted DGC activity was indirectly verified via a cdrA-lacZ transcriptional fusion.
77

Roles of Chlamydia Trachomatis Early Effector Proteins Tarp, TmeA, and TmeB in Host Cytoskeleton Remodeling During Invasion

Scanlon-Richardson, Kaylyn R 01 January 2023 (has links) (PDF)
Chlamydia trachomatis is an obligate intracellular bacterial pathogen responsible for human genital and ocular infections. Species of Chlamydia utilize a type-III secretion system to deliver bacterial effector proteins into the host cell in order to promote invasion and establish residence within a parasitophorous vacuole called an inclusion. The effector protein Tarp has been previously implicated as an important effector for promoting invasion during Chlamydia trachomatis infection by directing the formation of new actin filaments and bundles. Intriguingly, the significance of Tarp mediated cytoskeletal changes has not been fully explored in vivo. Host-pathogen interaction studies that replicate the human infection can be performed with mouse adapted Chlamydia, Chlamydia muridarum. However, the genetic tools to create gene deletions in C. muridarum have been lacking. Recently, our collaborators in the Fields and Wolf Laboratories developed a novel genetic tool for creating Tarp deletion mutants and complement clones in Chlamydia muridarum. Through the use of this tool, we were able to study the significance of Tarp in a murine infection model. In addition to Tarp, two other early effectors TmeA and TmeB are hypothesized to play a role in invasion, but a full account of their involvement remained unknown. In our studies, we were able to determine the roles of TmeA and TmeB in remodeling the host cytoskeleton. Using biochemical crosslinking assays, and actin polymerization studies, we discovered that TmeA has the ability to activate host protein N-Wasp in order to increase Arp2/3-dependent actin polymerization, while TmeB can in turn inhibit Arp2/3-directed actin polymerization via direct interactions with Arp2/3. Collectively, these are important findings as our studies have revealed how a collection of early chlamydial effectors work to modulate the host cytoskeleton to facilitate Chlamydia infections.
78

The Envelope Stress Response in Sedimentation-Resistant Escherichia Coli

Shah, Neel K 01 January 2019 (has links)
Previous research discovered the existence of sedimentation-resistant mutants of E. coli. Genomic studies revealed that these mutants resisted sedimentation due to independent modifications to genes that influenced the Rcs signal transduction pathway, causing increased secretion of an exopolysaccharide capsule comprised primarily of colanic acid. The Rcs system is responsible for detecting envelope stressors; consequently, ampicillin and osmotic stress were used to perturb the cellular envelope and study the response of the mutants compared to wild-type cells. It was found that the overproduction of colanic acid in the mutants confers some resistance to envelope stress; however, the mutants still behaved similarly to wild-type cells. The doubling times of the strains grown in sodium chloride solutions were calculated. A wavelength scan from 400 nm to 800 nm was performed on strains grown in different salt concentrations to determine if there were significant differences in light scattering between the wild-type and mutant cells. Further analysis was performed that, along with the doubling time data, suggested that wild-type cells may have turned on genes for capsule production in response to being grown in high salt concentrations. Additional research could be conducted to test this hypothesis, perhaps through the quantification of colanic acid through a methyl pentose assay for wild-type cultures grown with high salt concentrations. The idea that wild-type cells could digest colanic acid as a carbon source when lacking resources was also investigated with different preparations of colanic acid. One preparation of colanic acid showed promising results, which could indicate that bacteria are able to digest their capsule in a novel method to produce energy when starved. Again, additional investigation should be conducted to confirm these results. Other future experiments could study the metabolome of these mutants to determine if they have increased quantities of alarmones related to biofilm formation.
79

The Saccharomyces cerevisiae chitinase, encoded by the CTS1-2 gene, as an antifungal and biocontrol agent

Carstens, Maryke,1976- 04 1900 (has links)
Thesis (MScAgric) -- University of Stellenbosch, 2002. / ENGLISH ABSTRACT: Fungi are an extremely diverse group of organisms and, by acting as pathogens, they can colonise various other organisms, including humans, plants and animals. The effect of this is usually detrimental, not only to agricultural crops and livestock, but also to human well-being. The extensive farming of crops and livestock requires persistent control of fungal populations, commonly through the use of chemical fungicides. However, the exclusive use of fungicides is no longer a sustainable practice, as a result of serious problems, such as increasing fungicide resistance in pathogen strains, the high costs of fungicides, as well as concern about the environment. The search by producers and scientists for alternative control measures is an ongoing process. The fungal cell wall consists of polysaccharides that not only playa role in protection of the fungi, but also in relaying signals for the invasion and infection of susceptible hosts. Chitin, a polysaccharide composed of N-acteylglucosamine (GleNAc) residues linked by P-1,4 glucosidic linkages, is one of the major components of the fungal cell wall, where it plays an important role in the apical growth of the vegetative hyphae. Chitinases (EC 3.2.1.14) are abundant proteins produced by a variety of microorganisms and plants and are necessary for the hydrolysis of the chitin polymer. During the invasion of many plant species by a pathogen, the production of a specific group of proteins, designated pathogenesis-related (PR) proteins that include chitinases, is induced as part of their defence response. Due to the facts that pathogenic fungi contain chitin in their cell walls and that plant chitinases are induced upon pathogen attack, chitinases have been confirmed as an integral and crucial part of the plant's natural defence response. Chitinases have increasingly been targeted to upregulate plants' endogenous disease resistance mechanisms through transgenic overexpression in a variety of hosts. Several species of fungi, including various Trichoderma spp., are potent biocontrol agents of plant pathogenic fungi and insects. The antagonistic activities of these biological control agents towards phytopathogens are based on the secretion of extracellular hydrolytic enzymes, such as cell wall-degrading chitinase enzymes. However, biological control is not restricted to naturally occurring biocontrol agents. Through the process of genetic transformation, other fungal or yeast species can be enhanced to produce their own chitinases or other antimicrobial substances more effectively in order to yield potent biocontrol agents. Various types of chitinases have been applied in the production of fungal resistant plants and some research has been done on the application of chitinases, from a variety of microorganisms, as biological control agents. In contrast, very little is known about the antifungal activity of the Saccharomyces cerevisiae chitinase enzyme, encoded by the CTS1-2 gene. The CTS1-2 gene was utilised in this study as a candidate for overexpression in both yeast and plant expression systems to analyse the ability of the encoding chitinase to inhibit fungal growth. The first objective of this study involved the high level expression and optimisation of the secretion of the CTS1-2 gene in S. cerevisiae to render recombinant yeast with enhanced antifungal abilities and with possible applications as a biocontrol agent to control plant pathogenic fungi. It was hypothesised that high-level expression and efficient secretion would be prerequisites in a biocontrol yeast strain. To this end, two strong promoters and terminators were included in the study and the secretion of the chitinase gene was evaluated by testing three different secretion signals. The secretion signals included: the native CTS1-2 secretion signal, the S. cerevisiae mating pheromone a-factor (MFa1) secretion signal, as well as the Trichoderma reesei f3-xylanase 2 (XYN2) secretion signal. The phosphoglycerate kinase 1 (PGK1) and alcohol dehydrogenase 2 (ADH2) promoters and terminators were employed to achieve high-level expression. The results obtained from the analysis of the recombinant yeasts showed that the PGK1 promoter-terminator constructs yielded high level CTS1-2-expressing and chitinase-producing strains of S. cerevisiae PRY488. The ability of the different secretion signals to efficiently secrete the overexpressed chitinase was analysed and it was found that the non-native secretion signals delivered significantly more protein to the extracellular environment. It was thus evident that the performance of the MFa1 and XYN2 secretion signals was superior to that of the native secretion signal. The antifungal activities of the recombinant chitinases produced by these constructs were tested in in vitro assays against Botrytis cinerea. The enzymes led to a significant reduction in hyphal development, caused by extreme structural damage to the hyphal tips, the hyphal cell walls as well as the ability of the fungus to form reproductive and survival structures, thereby confirming the antifungal abilities of this enzyme. The ADH2 promoter-terminator constructs yielded CTS1-2 transcripts, but no chitinase activity could be detected with any of these strains. The reasons for this still remain unclear. The second objective of this study was to assess the potential of the yeast chitinase gene to upregulate defence against fungal infection in planta. In order to elucidate this, the CTS1-2 gene was constitutively overexpressed in tobacco plants, targeting the chitinase both to the intra- and the extracellular environment. The results obtained showed that the transgenic tobacco lines regenerated in this study stably integrated the transgene, exhibiting transgene expression as well as the production of a biologically active yeast chitinase enzyme. The F, progeny were rigorously tested for resistance to B. cinerea, and both in vitro and in planta assays confirmed that the yeast chitinase increased the plant's tolerance to fungal infection; some of the lines showed disease resistance of 65 and 70%. The plants expressing an extracellularly targeted chitinase gene are still under evaluation. Interesting results are expected relating to the effect of the chitinase on the plant surface with regards to disease resistance to fungal pathogens. In conclusion, the combined set of results from both the yeast and plant overexpression studies has confirmed the strong antifungal effect of yeast chitinases. The yeast CTS1-2 chitinase could be instrumental in the development of a new generation of yeast strains with improved antifungal capabilities. This enzyme could also play an important role in genetic transformation technologies aimed at enhanced disease resistance. / AFRIKAANSE OPSOMMING: Swamme omsluit 'n uiterste diverse groep organismes wat mense, plante en diere deur patogeniese aksie kan koloniseer. Die uitkoms hiervan op landbougewasse, die veebedryf en menslike gesondheid is gewoonlik skadelik. Uitgebreide gewas- en veeboerderye benodig voortdurende beheer van fungiese populasies, tipies deur van chemiese swamdoders gebruik te maak. Die uitsluitlike gebruik van swamdoders is egter nie meer 'n lewensvatbare praktyk nie, hoofsaaklik as gevolg van probleme soos die opbou van weerstand van patogeniese rasse teen swamdoders, die hoë kostes van die middels, asook besorgheid oor die omgewing. Die soektog na alternatiewe beheermaatreëls deur produsente en wetenskaplikes bly 'n aaneenlopende proses. Die swamselwand bestaan uit polisakkariede wat nie net In rol in die beskerming van die swam speel nie, maar ook betrokke is in die oordrag van aanvals- en infeksieverwante seine in 'n vatbare gasheer. Chitien, 'n polisakkaried bestaande uit N-asetielglukosamien (GlcNAc) residu's gekoppel deur 13-1,4glukosidiese bindings, is een van die hoofkomponente van die swamselwand, waar dit 'n belangrike rol in die apikale groei van vegetatiewe hifes speel. Chitinases (EC 3.2.1.14) is proteïene wat oorvloedig deur 'n verskeidenheid van mikroërganismes en plante geproduseer word, waar hulle vir die hidrolise van die chitien polimeer noodsaaklik is. Tydens die infeksie van verskeie plantspesies deur In patogeen, word die produksie van 'n spesifieke groep proteïene, die sogenaamde patogeen-verwante (PR) proteïene wat chitinases insluit, as deel van die plant se verdedigingsreaksie geïnduseer. Die feit dat patogeniese swamselwande chitien bevat en dat plantchitinases tydens infeksie geïnduseer word, het daartoe gelei dat dit bevestig is dat chitinases In integrale en kritiese deel van die plant se natuurlike verdedigingsreaksie uitmaak. Chitinases word toenemend geteiken in pogings om die plant se intrinsieke siekteweerstandsmeganismes te verbeter deur transgeniese ooruitdrukking daarvan in 'n verskeidenheid van gashere. Verskeie swamspesies, insluitend verskillende Trichodenna-spesies, is kragtige bio-antagoniste van plantpatogeniese swamme. Die antagonistiese aksies van hierdie biologiese beheeragente teenoor fitopatogene is gebaseer op die uitskeiding van ekstrasellulêre hidrolitiese ensieme, soos die selwandverterende chitinase ensieme. Nietemin is biologiese beheer nie net tot bio-antagoniste wat natuurlik voorkom beperk nie. Deur die proses van genetiese transformasie kan ander swam- of gisspesies verbeter word om hul eie chitinases of ander antimikrobiese substanse meer effektief te produseer, wat aanleiding sal gee tot kragtige bio-antagoniste. Verskeie tipes chitinases is al in die produksie van swambestande plante ingespan en uitgebreide navorsing is gedoen op die toepassing van 'n reeks chitinases, afkomstig van 'n verskeidenheid van mikroërganismes, as biologiese beheeragente. In teenstelling is baie min bekend oor die antifungiese aktiwiteite van die Saccharomyces cerevisiae chitinase ensiem, wat deur die CTS1-2 geen ge-enkodeer word. Die CTS1-2-geen is in hierdie studie gebruik vir ooruitdrukking in beide gis- en plantuitdrukkingsisteme om die chitinase se vermoë om swamgroei te inhibeer, te ondersoek. Die eerste oorkoepelende oogmerk van hierdie studie het hoë-vlak uitdrukking en optimalisering van sekresie van die CTS1-2-geen in S. cerevisiae behels, met die toekomstige doelwit om 'n rekombinante gis met verbeterde antifungiese eienskappe en met moontlike toepassings as 'n bio-antagonis teen plantpatogeniese swamme te ontwikkel. Die hipotese was dat hoë-vlak uitdrukking en voldoende sekresie voorvereistes vir 'n bio-antagonisras is. Omdié rede is twee sterk promotors en termineerders by hierdie studie ingesluit en is die sekresie van die chitinase-geen geëvalueer deur drie verskillende sekresieseine te toets. Die sekresieseine sluit in: die wilde-tipe CTS1-2 sekresiesein, die S. cerevisiae paringsferomoon a-faktor (MFa1) sekresiesein, en die Trichoderma reesei p-xilanase (XYN2) sekresiesein. Die fosfogliseraat kinase 1 (PGK1) en alkohol dehidrogenase 2 (ADH2) promotors en termineerders is gebruik om hoë-vlak uitdrukking te dryf. Die resultate wat vanaf die analises van die rekombinante giste verkry is, het getoon dat die PGK1 promotor-termineerder konstrukte hoë-vlak CTS1-2-uitdrukkende en chitinase-produserende S. cerevisiae PRY488 rasse opgelewer het. Die vermoë van die verskillende sekresieseine om die ooruitgedrukte chitinase voldoende uit te skei, is geanaliseer, en daar is gevind dat die heteroloë sekresieseine aansienlik meer proteïene na die ekstrasellulêre omgewing geloods het. Dit was dus duidelik dat die MFa1 en XYN2 sekresieseine beter as die wilde-tipe sekresiesein presteer het. Die antifungiese aktiwiteit van die rekombinante chitinases wat deur hierdie konstrukte geproduseer is, is ook in in vitrotoetse teen Botryits cinerea getoets. Die teenwoordigheid van die ensieme het gelei tot 'n aansienlike afname in hife-ontwikkeling, veroorsaak deur ekstreme strukturele skade aan die hifepunte, die hifeselwande, asook die vermoë van die swam om voortplanting- en oorlewingstrukture te vorm. Die ADH2 promotor-termineerderkonstrukte het CTS1-2 transkripte vertoon, maar geen chitinase-aktiwiteite kon in hierdie konstrukte waargeneem word nie. Die redes hiervoor is tot op hede onbekend. Die tweede oogmerk van hierdie studie was om die potensiaal van die gischitinase om swaminfeksie in planta teë te werk, te ondersoek. Die CTS1-2-geen is konstitutief ooruitgedruk in tabakplante, waarin die chitinase na beide die intra- en ekstrasellulêre omgewing geteiken is. Resultate het getoon dat die geregenereerde transgeniese tabaklyne die transgeen stabiel geïntegreer het, transgeenuitdrukking vertoon en dat 'n biologies aktiewe chitinase-ensiem geproduseer is. 'n F1-generasie is aan strawwe toetse onderwerp om weerstand teen B. cinerea te ondersoek. Beide die in vitro en in planta toetse het bevestig dat die gischitinase die plant se verdraagsaamheid teenoor swaminfeksie verhoog het; sommige lyne het siekteweerstand van tussen 65 en 70% getoon. Die plante wat 'n ekstrasellulêre chitinase produseer, word steeds geëvalueer. Interessante resultate word verwag aangaande die effek van die chitinase op die plant se oppervlak met betrekking tot siekteweerstand teen swampatogene. Ten slotte, die gekombineerde stel resultate wat vanaf beide die gis- en plantuitdrukkingstudies verkry is, het die sterk antifungiese effek van gischitinases bevestig. Die gis CTS1-2 kan instrumenteel wees in die ontwikkeling van 'n nuwe generasie gisrasse met verbeterde antifungiese eienskappe. Die ensiem kan ook 'n belangrike rol in genetiese transformasietegnologieë, wat op verbeterde siekteweerstand gemik is, speel.
80

Investigation of Anaplasma phagocytophilum and Anaplasma marginale adhesin-host cell interactions

Hebert, Kathryn S. 01 January 2016 (has links)
Anaplasma phagocytophilum and A. marginale are the etiologic agents of bovine anaplasmosis and human granulocytic anaplasmosis, respectively. As obligate intracellular pathogens, binding and entry of host cells is a prerequisite for survival. The molecular events associated with these processes are poorly understood. Identifying the adhesins mediating binding, delineating their key functional domains, and determining the molecular determinants to which they bind not only benefits better understanding of Anaplasma spp. pathobiology, but could also benefit the development of novel approaches for protecting against infection. We previously demonstrated that A. phagocytophilum outer membrane protein A (ApOmpA) is critical for bacterial binding and entry host through recognition of α2,3-sialic acid and α1,3-fucose of its receptors, including 6-sulfo-sLex. In this study, we determined that two amino acids, G61 and K64, within its binding domain (ApOmpA59-74), are essential for ApOmpA function. We also confirmed the ability of ApOmpA to act as an adhesin and invasin as it conferred adhesiveness and invasiveness to inert beads. We next extended our studies to A. marginale as it also expresses OmpA (AmOmpA) and its role in infection has not been studied. Molecular models of ApOmpA and AmOmpA were nearly identical, especially in the ApOmpA binding domain and its counterpart in AmOmpA. Antisera raised against AmOmpA or its putative binding domain inhibit A. marginale infection. AmOmpA G55 and K58 are contributory and K59 is essential for AmOmpA to bind to host cells. AmOmpA binding is dependent on α2,3-sialic acid and α1,3-fucose. Coating inert beads with AmOmpA conferred the ability to bind to and be taken up by host cells, confirming that it acts as an adhesin and invasin. 6-sulfo-sLex is dispensable for AmOmpA binding and A. marginale infection. ApOmpA works cooperatively with Asp14 (14-kDa A. phagocytophilum surface protein) to promote optimal infection of host cells. We found that Asp14 is conserved across A. phagocytophilum strains and in A. marginale and confirmed the ability of Asp14 to act as an adhesin and invasin as it conferred adhesiveness and invasiveness to inert beads. Collectively, this work advances our understanding of A. phagocytophilum and A. marginale adhesion and invasion of host cells.

Page generated in 0.0227 seconds