• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 4
  • 2
  • Tagged with
  • 28
  • 28
  • 28
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Mapeamentos Simpléticos em Dinâmica Asteroidal / Symplectic mappings in asteroidal dynamics

Fernando Virgilio Roig 08 August 1997 (has links)
Neste trabalho, desenvolvemos um mapeamento simplético que nos permite estudar o comportamento dinâmico de ressonâncias asteroidais no âmbito do problema dos três corpos restrito, elíptico, espacial. Para obter este mapeamento, combinamos um esquema simplético similar ao desenvolvido por Hadjidemetriou (1986) junto com o desenvolvimento assimétrico da função perturbadora (Ferraz-Mello, 1987), que leva em conta as inclinações do perturbado e do perturbador como sendo referidas a um plano invariante (Roig et al., 1997). Este mapeamento é aplicado aos casos das ressonâncias asteroidais 2/1 e 3/2. Estudam-se um grande número de condições iniciais no espaço de fase, de forma a conseguir tirar conclusões de tipo estatístico sobre os processos envolvidos na geração de mecanismos difusivos que podem agir nessas ressonâncias. / In this work, we developed a symplectic mapping which allow us to study the dynamical behaviour of asteroidal resonances in the frame of the non-planar elliptic restricted three-body problem. To obtain such a mapping we combine a symplectic scheme similar to that of Hadjidemetriou (1986) together with an asymmetric expansion of the disturbing funtion (Ferraz-Mello, 1987) which takes into account the inclinations of both the perturber and the disturbed bodies (Roig et al., 1997). This mapping is applied to the 2/1 and 3/2 mean motion resonances in the asteroidal belt. We explore a wide range of initial conditions in the phase space in order to get a large number of results which allow us to make some statistical conclusions about the generation of diffusion mechanisms acting in these resonances.
22

On the N-body Problem

Xie, Zhifu 14 July 2006 (has links) (PDF)
In this thesis, central configurations, regularization of Simultaneous binary collision, linear stability of Kepler orbits, and index theory for symplectic path are studied. The history of their study is summarized in section 1. Section 2 deals with the following problem: given a collinear configuration of 4 bodies, under what conditions is it possible to choose positive masses which make it central. It is always possible to choose three positive masses such that the given three positions with the masses form a central configuration. However, for an arbitrary configuration of 4 bodies, it is not always possible to find positive masses forming a central configuration. An expression of four masses is established depending on the position x and the center of mass u, which gives a central configuration in the collinear four body problem. Specifically it is proved that there is a compact region in which no central configuration is possible for positive masses. Conversely, for any configuration in the complement of the compact region, it is always possible to choose positive masses to make the configuration central. The singularities of simultaneous binary collisions in collinear four-body problem is regularized by explicitly constructing new coordinates and time transformation in section 3. The motion in the new coordinates and time scale across simultaneous binary collision is at least C^2. Furthermore, the behavior of the motion closing, across and after the simultaneous binary collision, is also studied. Many different types of periodic solutions involving single binary collisions and simultaneous binary collisions are constructed. In section 4, the linear stability is studied for the Kepler orbits of the rhombus four-body problem. We show that, for given four proper masses, there exists a family of periodic solutions for which each body with the proper mass is at the vertex of a rhombus and travels along an elliptic Kepler orbit. Instead of studying the 8 degrees of freedom Hamilton system for planar four-body problem, we reduce this number by means of some symmetry to derive a two degrees of freedom system which then can be used to determine the linear instability of the periodic solutions. After making a clever change of coordinates, a two dimensional ordinary differential equation system is obtained, which governs the linear instability of the periodic solutions. The system is surprisingly simple and depends only on the length of the sides of the rhombus and the eccentricity e of the Kepler orbit. In section 5, index theory for symplectic paths introduced by Y.Long is applied to study the stability of a periodic solution x for a Hamiltonian system. We establish a necessary and sufficient condition for stability of the periodic solution x in two and four dimension.
23

Adventures in the Kozai-Lidov Mechanism

Antognini, Joseph M. 08 June 2016 (has links)
No description available.
24

Development of a Discretized Model for the Restricted Three-Body Problem

Jedrey, Richard M. 28 July 2011 (has links)
No description available.
25

Origem e Evolução Dinâmica de Algumas Populações de Pequenos Corpos Ressonantes no Sistema Solar / Dynamical evolution and origin of some populations of small Solar System resonant bodies

Roig, Fernando Virgilio 18 October 2001 (has links)
Nesta tese estudamos algumas regiões de aparente estabilidade no cinturão de asteróides e no cinturão de Kuiper, analisando a evoluçãao dinâmica dos objetos nessas regiões por intervalos de tempo muito longos, em geral, da ordem da idade do Sistema Solar. Centramos principalmente nossa atenção no estudo das populações de pequenos corpos ressonantes, analisando três exemplos diferentes: a ressonância 2/1 com Júpiter e seu entorno (falha de Hecuba), a ressonância 2/3 com Netuno (Plutinos), e a ressonância 1/1 com Júpiter (Troianos). Atacamos o problema com diferentes ferramentas numéricas e analíticas: integração numérica direta de modelos precisos, modelos estatísticos de caminhada aleatória, modelos semi-analíticos baseados no desenvolvimento assimétrico da função perturbadora, cálculo de expoentes de Lyapunov, análise de freqüências, determinação de elementos próprios e taxas de difusão, etc. Os resultados obtidos permitem elaborar conclusões sobre a possível origem e evolução dinâmica destas populações. / In this thesis, we study some regions of regular motion in the asteroid main belt and in the Kuiper belt. We analyze the dynamical evolution in these regions over time scales of the order of the age of the Solar System. We centered our study on the populations of resonant minor bodies, discussing three examples: the 2/1 mean motion resonance with Jupiter (Hecuba gap), the 2/3 resonance with Neptune (Plutinos), and the 1/1 resonance with Jupiter (Trojans). We attack the problem with several different tools, both analytic and numeric: integration of N-body models, random-walk statistical models, semi-analytical models based on the assymetric expansion of the disturbing function, calculation of the maximum Lyapunov exponent, frequancy analysis, estimates of the diffusion of proper elements, etc. The results allow to draw conclusions about the possible origin of these populations.
26

Simulation de la dynamique des dislocations à très grande échelle / Hybrid parallelism on large scale dislocation dynamic simulation

Etcheverry, Arnaud 23 November 2015 (has links)
Le travail réalisé durant cette thèse vise à offrir à un code de simulation en dynamique des dislocations les composantes essentielles pour permettre le passage à l’échelle sur les calculateurs modernes. Nous abordons plusieurs aspects de la simulation numérique avec tout d’abord des considérations algorithmiques. Pour permettre de réaliser des simulations efficaces en terme de complexité algorithmique pour des grandes simulations, nous explorons les contraintes des différentes étapes de la simulation en offrant une analyse et des améliorations aux algorithmes. Ensuite, une considération particulière est apportée aux structures de données. En prenant en compte les nouveaux algorithmes, nous proposons une structure de données pour bénéficier d’accès performants à travers la hiérarchie mémoire. Cette structure est modulaire pour faire face à deux types d’algorithmes, avec d’un côté la gestion du maillage nécessitant une gestion dynamique de la mémoire et de l’autre les phases de calcul intensifs avec des accès rapides. Pour cela cette structure modulaire est complétée par un octree pour gérer la décomposition de domaine et aussi les algorithmes hiérarchiques comme le calcul du champ de contrainte et la détection des collisions. Enfin nous présentons les aspects parallèles du code. Pour cela nous introduisons une approche hybride, avec un parallélisme à grain fin à base de threads, et un parallélisme à gros grain de type MPI nécessitant une décomposition de domaine et un équilibrage de charge.Finalement, ces contributions sont testées pour valider les apports pour la simulation numérique. Deux cas d’étude sont présentés pour observer et analyser le comportement des différentes briques de la simulation. Tout d’abord une simulation extrêmement dynamique, composée de sources de Frank-Read dans un cristal de zirconium est utilisée, avant de présenter quelques résultats sur une simulation cible contenant une forte densité de défauts d’irradiation. / This research work focuses on bringing performances in 3D dislocation dynamics simulation, to run efficiently on modern computers. First of all, we introduce some algorithmic technics, to reduce the complexity in order to target large scale simulations. Second of all, we focus on data structure to take into account both memory hierachie and algorithmic data access. On one side we build this adaptive data structure to handle dynamism of data and on the other side we use an Octree to combine hierachie decompostion and data locality in order to face intensive arithmetics with force field computation and collision detection. Finnaly, we introduce some parallel aspects of our simulation. We propose a classical hybrid parallelism, with task based openMP threads and domain decomposition technics for MPI.
27

Origem e Evolução Dinâmica de Algumas Populações de Pequenos Corpos Ressonantes no Sistema Solar / Dynamical evolution and origin of some populations of small Solar System resonant bodies

Fernando Virgilio Roig 18 October 2001 (has links)
Nesta tese estudamos algumas regiões de aparente estabilidade no cinturão de asteróides e no cinturão de Kuiper, analisando a evoluçãao dinâmica dos objetos nessas regiões por intervalos de tempo muito longos, em geral, da ordem da idade do Sistema Solar. Centramos principalmente nossa atenção no estudo das populações de pequenos corpos ressonantes, analisando três exemplos diferentes: a ressonância 2/1 com Júpiter e seu entorno (falha de Hecuba), a ressonância 2/3 com Netuno (Plutinos), e a ressonância 1/1 com Júpiter (Troianos). Atacamos o problema com diferentes ferramentas numéricas e analíticas: integração numérica direta de modelos precisos, modelos estatísticos de caminhada aleatória, modelos semi-analíticos baseados no desenvolvimento assimétrico da função perturbadora, cálculo de expoentes de Lyapunov, análise de freqüências, determinação de elementos próprios e taxas de difusão, etc. Os resultados obtidos permitem elaborar conclusões sobre a possível origem e evolução dinâmica destas populações. / In this thesis, we study some regions of regular motion in the asteroid main belt and in the Kuiper belt. We analyze the dynamical evolution in these regions over time scales of the order of the age of the Solar System. We centered our study on the populations of resonant minor bodies, discussing three examples: the 2/1 mean motion resonance with Jupiter (Hecuba gap), the 2/3 resonance with Neptune (Plutinos), and the 1/1 resonance with Jupiter (Trojans). We attack the problem with several different tools, both analytic and numeric: integration of N-body models, random-walk statistical models, semi-analytical models based on the assymetric expansion of the disturbing function, calculation of the maximum Lyapunov exponent, frequancy analysis, estimates of the diffusion of proper elements, etc. The results allow to draw conclusions about the possible origin of these populations.
28

Modèles attractifs en astrophysique et biologie : points critiques et comportement en temps grand des solutions / Attractive models in Astrophysics and Biology : Critical Points and Large Time Asymtotics

Campos Serrano, Juan 14 December 2012 (has links)
Dans cette thèse, nous étudions l'ensemble des solutions d'équations aux dérivées partielles résultant de modèles d'astrophysique et de biologie. Nous répondons aux questions de l'existence, mais aussi nous essayons de décrire le comportement de certaines familles de solutions lorsque les paramètres varient. Tout d'abord, nous étudions deux problèmes issus de l'astrophysique, pour lesquels nous montrons l'existence d'ensembles particuliers de solutions dépendant d'un paramètre à l'aide de la méthode de réduction de Lyapunov-Schmidt. Ensuite un argument de perturbation et le théorème du Point xe de Banach réduisent le problème original à un problème de dimension finie, et qui peut être résolu, habituellement, par des techniques variationnelles. Le reste de la thèse est consacré à l'étude du modèle Keller-Segel, qui décrit le mouvement d'amibes unicellulaires. Dans sa version plus simple, le modèle de Keller-Segel est un système parabolique-elliptique qui partage avec certains modèles gravitationnels la propriété que l'interaction est calculée au moyen d'une équation de Poisson / Newton attractive. Une différence majeure réside dans le fait que le modèle est défini dans un espace bidimensionnel, qui est expérimentalement consistant, tandis que les modèles de gravitationnels sont ordinairement posés en trois dimensions. Pour ce problème, les questions de l'existence sont bien connues, mais le comportement des solutions au cours de l'évolution dans le temps est encore un domaine actif de recherche. Ici nous étendre les propriétés déjà connues dans des régimes particuliers à un intervalle plus large du paramètre de masse, et nous donnons une estimation précise de la vitesse de convergence de la solution vers un profil donné quand le temps tend vers l'infini. Ce résultat est obtenu à l'aide de divers outils tels que des techniques de symétrisation et des inégalités fonctionnelles optimales. Les derniers chapitres traitent de résultats numériques et de calculs formels liés au modèle Keller-Segel / In this thesis we study the set of solutions of partial differential equations arising from models in astrophysics and biology. We answer the questions of existence but also we try to describe the behavior of some families of solutions when parameters vary. First we study two problems concerned with astrophysics, where we show the existence of particular sets of solutions depending on a parameter using the Lyapunov-Schmidt reduction method. Afterwards a perturbation argument and Banach's Fixed Point Theorem reduce the original problem to a finite-dimensional one, which can be solved, usually, by variational techniques. The rest of the thesis is de-voted to the study of the Keller-Segel model, which describes the motion of unicellular amoebae. In its simpler version, the Keller-Segel model is a parabolic-elliptic system which shares with some gravitational models the property that interaction is computed through an attractive Poisson / Newton equation. A major difference is the fact that it is set in a two-dimensional setting, which experimentally makes sense, while gravitational models are ordinarily three-dimensional. For this problem the existence issues are well known, but the behaviour of the solutions during the time evolution is still an active area of research. Here we extend properties already known in particular regimes to a broader range of the mass parameter, and we give a precise estimate of the convergence rate of the solution to a known profile as time goes to infinity. This result is achieved using various tools such as symmetrization techniques and optimal functional inequalities. The last chapters deal with numerical results and formal computations related to the Keller-Segel model

Page generated in 0.0484 seconds