• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 30
  • 12
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 115
  • 31
  • 26
  • 24
  • 22
  • 21
  • 20
  • 18
  • 17
  • 16
  • 16
  • 15
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

A Radio Frequency Quadrupole Instrument for use with Accelerator Mass Spectrometry: Application to Low Kinetic Energy Reactive Isobar Suppression and Gas–phase Anion Reaction Studies

Eliades, John Alexander 21 August 2012 (has links)
A radio frequency (rf) quadrupole instrument, currently known as an Isobar Separator for Anions (ISA), has been integrated into an Accelerator Mass Spectrometry (AMS) system to facilitate anion–gas reactions before the tandem accelerator. An AMS Cs+ sputter source provided > 15 keV ions that were decelerated in the prototype ISA to < 20 eV for reaction in a single collision cell and re-accelerated for AMS analysis. Reaction based isobar suppression capabilities were assessed for smaller AMS systems and a new technique for gas–phase reaction studies was developed. Isobar suppression of 36S– and 12C3– for 36Cl analysis, and YF3– and ZrF3– for 90Sr analysis were studied in NO2 with deceleration to < 12 eV. Observed attenuation cross sections, σ [x 10^–15 cm^2], were σ(S– + NO2) = 6.6, σ(C3– + NO2) = 4.2, σ(YF3– + NO2) = 7.6, σ(ZrF3– + NO2) = 19. With 8 mTorr NO2, relative attenuations of S–/Cl– ~ 10^–6, C3–/Cl– ~ 10^–7, YF3–/SrF3– ~ 5 x 10^–5 and ZrF3–/SrF3– ~ 4 x 10^–6 were observed with Cl– ~ 30% and SrF3– > 90% transmission. Current isobar attenuation limits with < 1.75 MV accelerator terminal voltage and ppm impurity levels were calculated to be 36S–/Cl– ~ 4 x 10^–16, 12C3–/Cl– ~ 1.2 x 10^–16, 90YF3–/SrF3– ~ 10^–15 and 90ZrF3–/SrF3– ~ 10^–16. Using 1.75 MV, four 36Cl reference standards in the range 4 x 10^–13 < 36Cl/Cl < 4 x 10^–11 were analyzed with 8 mTorr NO2. The measured 36Cl/Cl ratios plotted very well against the accepted values. A sample impurity content S/Cl < 6 x 10^–5 was measured and a background level of 36S–/Cl < 9 x 10^–15 was determined. Useful currents of a wide variety of anions are produced in AMS sputter sources and molecules can be identified relatively unambiguously by stripping fragments from tandem accelerators. Reactions involving YF3–, ZrF3–, S– and SO– + NO2 in the ISA analyzed by AMS are described, and some interesting reactants are identified.
112

Structure and Dynamics of Core-Excited Species

Travnikova, Oksana January 2008 (has links)
<p>In this thesis we have performed core-electron spectroscopy studies of gas phase molecular systems starting with smaller diatomic, continuing with triatomic and extending our research to more complex polyatomic ones. We can subdivide the results presented here into two categories: the first one focusing on electronic fine structure and effect of the chemical bonds on molecular core-levels and the other one dealing with nuclear dynamics induced by creation of a core hole. In our research we have mostly used synchrotron radiation based techniques such as X-ray Photoelectron (XPS), X-ray Absorption (XAS), normal and Resonant Auger (AES and RAS, respectively) and Energy-Selected Auger Electron PhotoIon COincidence (ES-AEPICO) spectroscopies.</p><p>We have demonstrated that resonant Auger spectroscopy can be used to aid interpretation of the features observed in XAS for Rydberg structures in the case of Cl<sub>2</sub> and C1s<sup>−1</sup>π*<sup>1</sup> states of allene molecules. The combined use of high-resolution spectroscopy with <i>ab initio</i> calculations can help the interpretation of strongly overlapped spectral features and disentangle their complex profiles. This approach enabled us to determine the differences in the lifetimes for core-hole 2p sublevels of Cl<sub>2</sub> which are caused by the presence of the chemical bond. We have shown that contribution in terms of the Mulliken population of valence molecular orbitals is a determining factor for resonant enhancement of different final states and fragmentation patterns reached after resonant Auger decays in N<sub>2</sub>O.</p><p>We have also performed a systematic study of the dependence of the C1s resonant Auger kinetic energies on the presence of different substituents in CH<sub>3</sub>X compounds. For the first time we have studied possible isomerization reaction induced by core excitation of acetylacetone. We could observe a new spectral feature in the resonant Auger decay spectra which we interpreted as a signature of core-excitation-induced keto-enol tautomerism.</p>
113

Structure and Dynamics of Core-Excited Species

Travnikova, Oksana January 2008 (has links)
In this thesis we have performed core-electron spectroscopy studies of gas phase molecular systems starting with smaller diatomic, continuing with triatomic and extending our research to more complex polyatomic ones. We can subdivide the results presented here into two categories: the first one focusing on electronic fine structure and effect of the chemical bonds on molecular core-levels and the other one dealing with nuclear dynamics induced by creation of a core hole. In our research we have mostly used synchrotron radiation based techniques such as X-ray Photoelectron (XPS), X-ray Absorption (XAS), normal and Resonant Auger (AES and RAS, respectively) and Energy-Selected Auger Electron PhotoIon COincidence (ES-AEPICO) spectroscopies. We have demonstrated that resonant Auger spectroscopy can be used to aid interpretation of the features observed in XAS for Rydberg structures in the case of Cl2 and C1s−1π*1 states of allene molecules. The combined use of high-resolution spectroscopy with ab initio calculations can help the interpretation of strongly overlapped spectral features and disentangle their complex profiles. This approach enabled us to determine the differences in the lifetimes for core-hole 2p sublevels of Cl2 which are caused by the presence of the chemical bond. We have shown that contribution in terms of the Mulliken population of valence molecular orbitals is a determining factor for resonant enhancement of different final states and fragmentation patterns reached after resonant Auger decays in N2O. We have also performed a systematic study of the dependence of the C1s resonant Auger kinetic energies on the presence of different substituents in CH3X compounds. For the first time we have studied possible isomerization reaction induced by core excitation of acetylacetone. We could observe a new spectral feature in the resonant Auger decay spectra which we interpreted as a signature of core-excitation-induced keto-enol tautomerism.
114

The rhizosphere effects of <i>Fagus sylvatica</i> L. and <i>Fraxinus excelsior</i> L. saplings on greenhouse gas fluxes between soil and atmosphere / Rhizosphären-Effekte der Jungpflanzen von <i>Fagus sylvatica</i> L. und <i>Fraxinus excelsior</i> L. auf den Treibhausgasaustausch von Boden und Atmosphäre

Fender, Ann-Catrin 06 June 2012 (has links)
No description available.
115

Fatores de controle das emissões de óxido nitroso (N2O) em tanque de aeração de estação de tratamento de esgoto

Brotto, Ariane Coelho 27 April 2017 (has links)
Submitted by Biblioteca de Pós-Graduação em Geoquímica BGQ (bgq@ndc.uff.br) on 2017-04-27T16:58:25Z No. of bitstreams: 1 Dissertação Brotto, A. C.pdf: 1827218 bytes, checksum: d583ce8460c1efc5934c93cec6ef4c3d (MD5) / Made available in DSpace on 2017-04-27T16:58:25Z (GMT). No. of bitstreams: 1 Dissertação Brotto, A. C.pdf: 1827218 bytes, checksum: d583ce8460c1efc5934c93cec6ef4c3d (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / Universidade Federal Fluminense. Instituto de Química. Programa de Pós-Graduação em Geociências- Geoquímica Ambiental. Niterói, RJ / O estudo das emissões de óxido nitroso (N2O) em processos de tratamento de esgoto tem se tornado necessário e urgente nos últimos anos visto à sua contribuição às mudanças climáticas globais, já que este gás é responsável por 6% do efeito estufa e tem se tornado a principal substância destruidora do ozônio estratosférico do século XXI. Poucos são os estudos que quantificaram as emissões de N2O diretamente em estações de tratamento de esgoto (ETEs) e a literatura apresenta uma grande variação nos fatores de emissão (FEs) obtidos por eles. As Diretrizes de 2006 do IPCC para Inventários de Gases do Efeito Estufa sugerem o FE de 3,2 (2-8) g N2O pessoa-1 ano-1 para estimativas das emissões de N2O em ETEs, que corresponde a 0,035% do nitrogênio total (NT) emitido como N2O. As emissões de N2O em processo de tratamento de lodos ativados foram determinadas no período de janeiro a julho de 2010 em uma ETE municipal no Estado do Rio de Janeiro que trata aproximadamente 14,7 mil m3 dia-1 com média remoção de DQO para o período de estudo de 73% e carga de NT afluente de 46 mg N L-1. Os principais parâmetros operacionais relacionados às emissões de N2O em ETE foram estudados, a saber, concentração de oxigênio dissolvido (OD), concentração de nitrito (NO2 -), pH e temperatura. As maiores emissões de N2O foram observadas quando a concentração de OD se encontrava entre 1,3 e 3,4 mg L-1, o pH entre 5,9 e 6,5 e temperatura acima de 30oC. Enquanto as menores emissões ocorreram em concentrações de OD abaixo de 1,0 mg L-1 e acima de 4,0 mg L-1, e em pH acima de 6,5. O fluxo de N2O estimado é de 4,1 x 105 g N2O ano-1 e os FEs de N2O per capita, por vazão de esgoto tratado e pela carga NT afluente são 8,1 g N2O pessoa-1 ano-1, 8,0 x 10-5 g N2O L -1 e 0,12%. O FE per capita estimado exclusivamente para o tanque de aeração é aproximadamente 2,5 vezes superior ao proposto pelo IPCC (2006) para inventários de emissões de N2O para países que possuam sistemas centralizados de tratamento de esgoto com avançado controle dos processos de nitrificação e desnitrificação. / The study of nitrous oxide (N2O) emissions from wastewater treatment processes has become necessary and urgent in the last years due to its contribution to global climate change, since this gas is responsible for 6% of the global greenhouse effect and will become the main ozone-depleting substances (ODS) of the 21st century. Few studies have quantified the direct emissions of N2O from wastewater treatment plants (WWTPs) and literature shows a wide variation in the emission factors (EFs) obtained by them. 2006 IPCC Guidelines for National Greenhouse Gas Inventories suggests an EF to estimate N2O emissions from WWTP of 3.2 (2.8) g N2O person-1 yr-1, which corresponds to 0.035% of total nitrogen emitted as N2O. Emissions of N2O from a full-scale activated sludge process was determined from January to July of 2010 during measurement campaign at a municipal WWTP in the State of Rio de Janeiro that treat roughly 14,700 m3 day-1 with an average influent removal COD for the period of study of 73% and total nitrogen load (TN) of 46 mg N L-1. The most important operational parameters leading N2O emissions in WWTP were also studied, namely, dissolved oxygen concentration (DO), nitrite (NO2 -) concentration, pH and temperature. The largest emissions of N2O were observed when DO concentration was between 1.3 and 3.4 mg L-1, pH between 5.9 and 6.5 and temperatures above 30oC. While lower emissions occurred in DO concentrations below 1.0 mg L-1 and above 4.0 mg L-1, and at pH above 6.5. Total estimated annual flux of N2O is 4.1 x 105 g N2O yr-1 and the EF of N2O estimated per capita, wastewater flow and the influent TN load are 8.1 g N2O person-1 yr-1, 8.0 x 10-5 g N2O L(wastewater)-1 and 0.12%. The per capita EF estimated exclusively for the aeration tank is almost 3 times higher than that proposed by the IPCC (2006) for N2O emission inventories for countries that predominantly have advanced centralized WWTPs with nitrification and denitrification steps.

Page generated in 0.0295 seconds