• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 72
  • 25
  • 17
  • 14
  • 8
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 371
  • 139
  • 75
  • 70
  • 61
  • 59
  • 49
  • 45
  • 44
  • 39
  • 33
  • 30
  • 29
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Microstructuration of nanofibrous membranes by electrospinning : application to tissue engineering / Micro-structuration de membranes nanofibreuses par électrospinning : application à l'ingénierie tissulaire

Nedjari, Salima 21 October 2014 (has links)
L’objectif de cette thèse était de développer de nouveaux biomatériaux nanofibreux architecturés (2D ou 3D) grâce à la méthode d’électrospinning puis d’étudier l’influence de ces structures nanofibreuses sur le comportement des cellules osseuses. L’électrospinning est une technique qui permet d’obtenir des nanofibres en projetant sous l’action d’un champ électrique intense une solution de polymère sur un collecteur. Les nanofibres sont alors généralement disposées aléatoirement sous forme de mats (ou scaffolds). Ces scaffolds trouvent des applications en ingénierie tissulaire grâce à leur structure mimant la matrice extracellulaire des tissus vivants. Toutefois, il a été montré que lorsque le collecteur est micro-structuré, il est alors possible de contrôler l’organisation des fibres lors de leur dépôt grâce à la perturbation locale du champ électrique au voisinage de la surface du collecteur. Ces collecteurs architecturés jouent ainsi le rôle de « templates » électrostatiques. Dans un premier temps, nous avons développé des scaffolds 2D nanofibreux monocomposants en forme de nids d’abeilles grâce à l’utilisation d’un collecteur micro-structuré en nids d’abeilles lors du procédé d’électrospinning. Ces scaffolds ont été développés à partir de deux biopolyesters le poly(ε-caprolactone) (PCL) ou le poly(lactic acid) (PLA). Nous avons prouvé que la morphologie des nanofibres de PCL (distribution bimodale du diamètre des fibres) conduisait à un scaffold présentant un relief beaucoup plus marqué alors qu’avec les fibres de PLA, qui présentent une distribution monomodale du diamètre des fibres, les scaffolds obtenus sont beaucoup plus plats. Nous avons montré qu’il est possible de contrôler l’organisation spatiale de cellules osseuses de type MG-63, des ostéoblastes, en jouant sur le relief et l’architecture du scaffold. Puis, nous avons démontré qu’en couplant la micro-structuration des nanofibres de PCL (par l’utilisation d’un collecteur en nid d’abeilles lors du procédé d’électrospinning) avec les propriétés d’auto-assemblage du PCL, nous pouvions élaborer de nouveaux scaffolds nanofibreux 3D ayant la particularité de présenter des pores de tailles contrôlées ainsi qu’un gradient de porosité dans l’épaisseur du scaffold. Puis nous nous sommes intéressés à l’élaboration de membranes composites micro-structurées 2D et 3D. En couplant le procédé d’électrospinning avec le procédé d’électrospraying sur des collecteur micro-structurés, nous avons démontré que nous pouvions déposer de manière contrôlée les particules spécialement sur les murs des nids d’abeilles grâce notamment à la présence d’une très fine couche de fibres électrospinnées au préalable sur le collecteur. Cette fine couche de nanofibres joue le rôle de « template électrostatique » pour le dépôt des particules. Nous avons ensuite appliqué cette technique pour développer des membranes composites nanofibreuses bicouches à base de nanofibres de PCL et de microparticules d’hydroxyapatite (HA). Ces membranes composées de 21 microarchitectures différentes (barres, plots, hexagones, labyrinthe) ont ensuite été intégrées dans des mini plaques de culture cellulaire, formant ainsi un nouveau type de biopuce, appelés biochips, qui permettent pour le screening des microarchitectures nanofibreuses. Enfin, en combinant simultanément l’électrospinning de nanofibres et l’électrospraying de particules sur des collecteur micro-structurés en nid d’abeilles, des scaffolds composites 3D présentant des pores cylindriques de tailles contrôlées ont été élaborés. / The aim of this thesis was to develop new architectured nanofibrous biomaterials (2D or 3D) using the electrospinning method and to study the influence of these nanofibrous structures on bone cells behaviors. Electrospinning is a technique allowing the production of nanofibers by projecting, under the action of a strong electric field, a polymer solution on a collector. The nanofibers are generally randomly deposited and form mats or scaffolds. These scaffolds are interesting for tissue engineering applications because of their structure mimicking the extracellular matrix of living tissues. However, it has been shown that when the collector is microstructured, it is possible to control the organization of the fibers during their deposition through the local perturbation of the electric field at the vicinity of the surface of the collector. These micropatterned collectors act as "electrostatic templates". First, 2D honeycomb nanofibrous scaffolds were elaborated using micropatterned honeycomb collectors during the electrospinning process. These scaffolds were made either with poly(ε-caprolactone) (PCL) or poly(lactic acid) (PLA). We showed that the morphology of the PCL nanofibers (bimodal distribution of the fiber diameter) led to a scaffold with a strong relief. Despite, with PLA fibers which presented a monomodal distribution of the fiber diameter, the obtained scaffolds were much flatter. It was possible to control the spatial organization of bone-like cells MG-63 (osteoblasts), playing on the relief and the architecture of the scaffold. Subsequently, 3D materials were elaborated using micropatterned collectors in order to open new paths for the development of filling materials for bone regeneration. Microstructuration of PCL nanofibers (by the use of micropatterned honeycomb collector during the electrospinning process) coupled with the self-assembling properties of the PCL lead to the development of new 3D nanofibrous scaffolds, with controlled pore size and porosity gradient in the thickness of the scaffold. Afterwards, micropatterned composite 2D and 3D membranes were elaborated. By coupling the process of electrospinning with the process of electrospraying on micropatterned collector, we demonstrated that we can deposit the particles in a controlled way, especially on the walls of honeycomb patterns thanks to the presence of a thin fiber layer first deposited on the collector. This thin nanofiber layer plays the role of an "electrostatic template" for the particles deposition. Thereafter, this technique was applied to develop bilayers composite nanofibrous membranes containing PCL nanofibers and hydroxyapatite (HA) microparticles. These membranes consisted of 21 different microarchitectures (bars, blocks, hexagons, maze) were then incorporated into a small cell culture plate, thereby forming a new type of biochip for the screening of nanofibrous architectures. Indeed, these biochips allowed the screening of nanofibrous microarchitectures to identify the most relevant for bone regeneration. It turned out that the HA hexagonal structures (with an average diameter of 300 microns) and circular HA structures (with an average diameter of 150 microns) are the structures that enhance the most the mineralization process of bone cells. Finally, by combining simultaneously electrospinning nanofibers and electrospraying particles on micropatterned honeycomb collector, 3D composite scaffolds were elaborated. It was possible to control the size of cylindrical pores of these 3D composite from tens to hundreds of microns by changing the size of the honeycomb patterns of the collector.
282

Low-Cost, Environmentally Friendly Electric Double-Layer Capacitors : Conept, Materials and Production

Andres, Britta January 2017 (has links)
Today’s society is currently performing an exit from fossilfuel energy sources. The change to sustainable alternativesrequires inexpensive and environmentally friendly energy storagedevices. However, most current devices contain expensive,rare or toxic materials. These materials must be replaced bylow-cost, abundant, nontoxic components.In this thesis, I suggest the production of paper-based electricdouble-layer capacitors (EDLCs) to meet the demand oflow-cost energy storage devices that provide high power density.To fulfill the requirements of sustainable and environmentallyfriendly devices, production of EDLCs that consist of paper,graphite and saltwater is proposed. Paper can be used as aseparator between the electrodes and as a substrate for theelectrodes. Graphite is suited for use as an active material in theelectrodes, and saltwater can be employed as an electrolyte.Westudied and developed different methods for the productionof nanographite and graphene from graphite. Composites containingthese materials and similar advanced carbon materialshave been tested as electrode materials in EDLCs. I suggest theuse of cellulose nanofibers (CNFs) or microfibrillated cellulose(MFC) as a binder in the electrodes. In addition to improvedmechanical stability, the nanocellulose improved the stabilityof graphite dispersions and the electrical performance of theelectrodes. The influence of the cellulose quality on the electricalproperties of the electrodes and EDLCs was investigated.The results showed that the finest nanocellulose quality is notthe best choice for EDLC electrodes; MFC is recommended forthis application instead. The results also demonstrated thatthe capacitance of EDLCs can be increased if the electrodemasses are adjusted according to the size of the electrolyte ions.Moreover, we investigated the issue of high contact resistancesat the interface between porous carbon electrodes and metalcurrent collectors. To reduce the contact resistance, graphitefoil can be used as a current collector instead of metal foils.Using the suggested low-cost materials, production methodsand conceptual improvements, it is possible to reduce the material costs by more than 90% in comparison with commercialunits. This confirms that paper-based EDLCs are apromising alternative to conventional EDLCs. Our findings andadditional research can be expected to substantially supportthe design and commercialization of sustainable EDLCs andother green energy technologies. / I dagens samhälle pågår en omställning från användning avfossila energikällor till förnybara alternativ. Denna förändringkräver miljövänliga och kostnadseffektiva elektriska energilagringsenheterför att möjliggöra en kontinuerlig energileverans.Dagens energilagringsenheter innehåller ofta dyra, sällsyntaeller giftiga material som behöver bytas ut för att nå hållbaralösningar.I denna avhandling föreslås att tillverka pappersbaseradesuperkondensatorer som möter kraven för kostnadseffektivaelektriska energilagrare med hög effekttäthet. För att nå kravenpå miljömässigt hållbara enheter föreslås användning avendast papper, grafit och saltvatten. Papper kan användas somseparator mellan elektroder likväl som substrat vid elektrodbestrykning.Grafit kan användas som aktivt elektrodmaterialoch saltvatten fungerar som elektrolyt. Olika metoder har härutvecklats för att producera nanografit och grafen från grafit.Dessa material har tillsammans med liknande, kommersiellt tillgängliga,avancerade kolmaterial testats i elektrodkompositerför superkondensatorer. Som bindemedel i dessa kompositerföreslås nanofibrillerad eller mikrofibrillerad cellulosa. Jaghar demonstrerat att nanocellulosa ökar dispersionsstabilitetensamt förbättrar den mekaniska stabiliteten och dom elektriskaegenskaperna i elektroderna. Hur cellulosans kvalitet påverkarelektroderna har undersökts och visar att den finaste kvaliteteninte är det bästa valet för superkondensatorer, istället rekommenderasmikrofibrillerad cellulosa. Utöver detta demonstrerasmöjligheten att öka superkondensatorernas kapacitans genomatt balansera elektrodernas massa med hänsyn till jonernasstorlek i elektrolyten. I avhandlingen diskuteras även svårigheternamed hög kontaktresistans i gränssnittet mellan porösakolstrukturer och metallfolie och hur detta kan undvikas omgrafitfolie används som kontakt.Genom att använda de material, produktionstekniker ochkonceptförbättringar som föreslås i avhandlingen är det möjligtatt reducera materialkostnaderna med mer än 90% i jämförelsemed kommersiella superkondensatorer. Detta bekräftar att pappersbaserade superkondensatorer är ett lovande alternativoch våra resultat tillsammans med vidare utveckling harstor potential att stödja övergången till miljömässigt hållbarasuperkondensatorer och annan grön energiteknik. / <p>Vid tidpunkten för disputationen var följande delarbeten opublicerade: delarbete 6 inskickat.</p><p>At the time of the doctoral defence the following papers were unpublished: paper 6 submitted.</p>
283

Oxidative desulfurization of fuel oils-catalytic oxidation and adsorptive removal of organosulfur compounds

Ogunlaja, Adeniyi Sunday January 2014 (has links)
The syntheses and evaluation of oxidovanadium(IV) complexes as catalysts for the oxidation of refractory organosulfur compounds in fuels is presented. The sulfones produced from the oxidation reaction were removed from fuel oils by employing molecularly imprinted polymers (MIPs). The oxidovanadium(IV) homogeneous catalyst, [V ͥ ͮ O(sal-HBPD)], as well as its heterogeneous polymer supported derivatives, poly[V ͥ ͮ O(sal-AHBPD)] and poly[V ͥ ͮ O(allylSB-co-EGDMA)], were synthesized and fully characterized by elemental analysis, FTIR, UV-Vis, XPS, AFM, SEM, BET and single crystal XRD for [V ͥ ͮ O(sal-HBPD)]. The MIPs were also characterized by elemental analysis, FTIR, SEM, EDX and BET. The catalyzed oxidation of fuel oil model sulfur compounds, thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT), was conducted under batch and continuous flow processes at 40°C by using tert-butylhydroperoxide (t-BuOOH) as oxidant. The continuous flow oxidation process presented the highest overall conversions and very high selectivity for sulfones. Maximum oxidation conversions of 71%, 89%, 99% and 88% was achieved for TH, BT, DBT and 4,6-DMDBT respectively when poly[V ͥ ͮ O(allylSB-co-EGDMA)] was employed at a flow-rate of 1 mL/h with over 90% sulfone selectivity. The process was further applied to the oxidation of hydro-treated diesel containing 385 ± 4.6 ppm of sulfur (mainly dibenzothiophene and dibenzothiophene derivatives), and this resulted to a high sulfur oxidation yield (> 99%), thus producing polar sulfones which are extractible by polar solid phase extractants. Adsorption of the polar sulfone compounds was carried-out by employing MIPs which were fabricated through the formation of recognition sites complementary to oxidized sulfur-containing compounds (sulfones) on electrospun polybenzimidazole (PBI) nanofibers, cross-linked chitosan microspheres and electrospun chitosan nanofibers. Adsorption of benzothiophene sulfone (BTO₂), dibenzothiophene sulfone (DBTO₂) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO₂) on the various molecularly imprinted adsorbents presented a Freundlich (multi-layered) adsorption isotherm which indicated interaction of adsorbed organosulfur compounds. Maximum adsorption observed for BTO₂, DBTO₂ and 4,6-DMDBTO₂ respectively was 8.5 ± 0.6 mg/g, 7.0 ± 0.5 mg/g and 6.6 ± 0.7 mg/g when imprinted chitosan nanofibers were employed, 4.9 ± 0.5 mg/g, 4.2 ± 0.7 mg/g and 3.9 ± 0.6 mg/g on molecularly imprinted chitosan microspheres, and 28.5 ± 0.4 mg/g, 29.8 ± 2.2 mg/g and 20.1 ± 1.4 mg/g on molecularly imprinted PBI nanofibers. Application of electrospun chitosan nanofibers on oxidized hydro-treated diesel presented a sulfur removal capacity of 84%, leaving 62 ± 3.2 ppm S in the fuel, while imprinted PBI electrospun nanofibers displayed excellent sulfur removal, keeping sulfur in the fuel after the oxidation/adsorption below the determined limit of detection (LOD), which is 2.4 ppm S. The high level of sulfur removal displayed by imprinted PBI nanofibers was ascribed to hydrogen bonding effects, and π-π stacking between aromatic sulfone compounds and the benzimidazole ring which were confirmed by chemical modelling with density functional theory (DFT) as well as the imprinting effect. The home-made pressurized hot water extraction (PHWE) system was applied for extraction/desorption of sulfone compounds adsorbed on the PBI nanofibers at a flow rate of 1 mL/min and at 150°C with an applied pressure of 30 bars. Application of molecularly imprinted PBI nanofibers for the desulfurization of oxidized hydro-treated fuel showed potential for use in refining industries to reach ultra-low sulfur fuel level, which falls below the 10 ppm sulfur limit which is mandated by the environmental protection agency (EPA) from 2015.
284

The development of functionalized electrospun nanofibers for the control of pathogenic microorganisms in water.

Kleyi, Phumelele Eldridge January 2014 (has links)
The thesis presents the development of functionalized electrospun nylon 6 nanofibers for the eradication of pathogenic microorganisms in drinking water. Imidazole derivatives were synthesized as the antimicrobial agents and were characterized by means of NMR spectroscopy, IR spectroscopy, elemental analysis and X-ray crystallography. The first set of compounds (2-substituted N-alkylimidazoles) consisted of imidazole derivatives substituted with different alkyl groups (methyl, ethyl, propyl, butyl, heptyl, octyl, decyl and benzyl) at the 1-position and various functional groups [carboxaldehyde (CHO), alcohol (CH2OH) and carboxylic acid (COOH)] at the 2-position. It was observed that the antimicrobial activity of the compounds increased with increasing alkyl chain length and decreasing pKa of the 2-substituent. It was also observed that the antimicrobial activity was predominantly against a Gram-positive bacterial strains [Staphylococcus aureus (MIC = 5-160 μg/mL) and Bacillus subtilis subsp. spizizenii (MIC = 5-20 μg/mL)], with the latter being the more susceptible. However, the compounds displayed poor antimicrobial activity against Gram-negative bacterial strain, E. coli (MIC = 150- >2500 μg/mL) and did not show any activity against the yeast, C. albicans. The second set of compounds consisted of the silver(I) complexes containing 2-hydroxymethyl-N-alkylimidazoles. The complexes displayed a broad spectrum antimicrobial activity towards the microorganisms that were tested and their activity [E. coli (MIC = 5-40 μg/mL), S. aureus (MIC = 20-80 μg/mL), Bacillus subtilis subsp. spizizenii (MIC = 5-40 μg/mL) and C. albicans (MIC = 40-80 μg/mL)] increased with the alkyl chain length of the 2-hydroxymethyl-N-alkylimidazole. The third set of compounds consisted of the vinylimidazoles containing the vinyl group either at the 1-position or at the 4- or 5- position. The imidazoles with the vinyl group at the 4- or 5-position contained the alkyl group (decyl) at the 1-position. For the fabrication of the antimicrobial nanofibers, the first two sets of imidazole derivatives (2-substituted N-alkylimidazoles and silver(I) complexes) were incorporated into electrospun nylon 6 nanofibers while the third set (2-substituted vinylimidazoles) was immobilized onto electrospun nylon 6 nanofibers employing the graft polymerization method. The antimicrobial nylon nanofibers were characterized by IR spectroscopy and SEM-EDAX (EDS). The electrospun nylon 6 nanofibers incorporated with 2-substituted N-alkylimidazoles displayed moderate to excellent levels of growth reduction against S. aureus (73.2-99.8 percent). For the electrospun nylon 6 nanofibers incorporated with silver(I) complexes, the levels of growth reduction were >99.99 percent, after the antimicrobial activity evaluation using the shake flask method. Furthermore, the grafted electrospun nylon 6 nanofibers showed excellent levels of growth reduction for E. coli (99.94-99.99 percent) and S. aureus (99.93-99.99 percent). The reusability results indicated that the grafted electrospun nylon 6 nanofibers maintained the antibacterial activity until the third cycle of useage. The cytotoxicity studies showed that grafted electrospun nylon 6 nanofibers possess lower cytotoxic effects on Chang liver cells with IC50 values in the range 23.48-26.81 μg/mL. The thesis demonstrated that the development of antimicrobial electrospun nanofibers, with potential for the eradication of pathogenic microoganisms in water, could be accomplished by incorporation as well as immobilization strategies.
285

Production and characterization of biodegradable films of banana starch and flour reinforced with cellulose nanofibers = Produção e caracterização de filmes biodegradáveis de amido e farinha de banana reforçados com nanofibras de celulose / Produção e caracterização de filmes biodegradáveis de amido e farinha de banana reforçados com nanofibras de celulose

Molina, Franciele Maria Pelissari 03 August 2013 (has links)
Orientadores: Florencia Cecilia Menegalli, Paulo José do Amaral Sobral / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-22T11:03:58Z (GMT). No. of bitstreams: 1 Molina_FrancieleMariaPelissari_D.pdf: 36133234 bytes, checksum: 708a6141c5f96de8a9fbf9b6d371fa0f (MD5) Previous issue date: 2013 / Resumo: Este trabalho de doutorado teve como objetivo estudar o potencial de uso do amido, farinha e nanofibras obtidos a partir de bananas verdes da variedade Terra (Musa paradisiaca) na elaboração de filmes biodegradáveis. Na primeira etapa do trabalho, o amido e a farinha de banana foram caracterizados quanto às propriedades físicoquímicas, funcionais e térmicas. Ambas as matérias-primas apresentaram considerável conteúdo de amido (94,8 e 83,2%, respectivamente) com alto teor de amilose (35,0 e 23,1%, respectivamente) e amido resistente (49,5 e 50,3%, respectivamente), além de fibras, proteínas e lipídios. Numa segunda etapa, filmes a partir de farinha de banana foram elaborados segundo um planejamento experimental. Os resultados obtidos foram analisados estatisticamente empregando a metodologia de superfície de resposta, que juntamente com a função de desejabilidade permitiu a obtenção da formulação e condições de processo ótimas (concentração de glicerol de 19%, temperatura de processo de 81 ºC, temperatura de secagem de 54 ºC e umidade relativa de 48%). Os filmes produzidos sob essas condições apresentaram tensão na ruptura de 9,2 MPa, elongação de 24,2%, módulo de Young de 583,4 MPa, permeabilidade ao vapor de água de 2,1 x 10-10 g/m.s.Pa e opacidade de 51,3%. Na terceira etapa do trabalho, foram elaborados filmes de farinha e amido de banana para determinar o efeito das fibras, proteínas e lipídios sobre as propriedades dos filmes. O filme de farinha de banana foi mais flexível, solúvel em água e opaco, e menos cristalino e resistente mecanicamente quando comparado com o filme de amido de banana. A partir da microestrutura, observou-se que o filme de farinha apresentou imperfeições na sua superfície e uma seção transversal menos densa com pequenas fissuras quando comparado com o filme de amido. Na quarta etapa, a casca da banana (subproduto do processamento da fruta) foi utilizada como matéria-prima para a obtenção de nanofibras de celulose, empregando tratamento químico e mecânico. A influência do número de passagens (0, 3, 5 e 7) das suspensões em um homogeneizador de alta pressão sobre a estrutura das nanofibras foi estudada. Os tratamentos foram efetivos no isolamento de fibras de banana na escala nanométrica (10,9 - 22,6 nm). Conforme o aumento do número de passagens no homogeneizador, nanofibras de celulose mais estáveis, cristalinas e de menor comprimento foram obtidas. Na última etapa, as nanofibras isoladas foram incorporadas na elaboração de nanocompósitos de amido da mesma fonte. As propriedades desses nanocompósitos foram comparadas com as de um filme de amido sem adição de nanofibras (controle), a fim de estudar o efeito deste reforço. Os nanocompósitos apresentaram uma melhora significativa nas propriedades tensão na ruptura, módulo de Young, resistência à água, opacidade e cristalinidade. Uma homogeneização mais drástica (7 passagens) promoveu a degradação das nanofibras, acarretando numa piora das propriedades do nanocompósito resultante, portanto, a condição de tratamento mecânico mais adequada foi de 5 passagens. As propriedades dos nanocompósitos foram relacionadas com as características físico-químicas das nanofibras incorporadas e também com a boa compatibilidade apresentada entre os biopolímeros amido e nanofibras, uma vez que estes foram obtidos da mesma fonte vegetal / Abstract: This doctor thesis aimed to study the potential use of the starch, flour, and nanofibers obtained from unripe bananas of the variety "Terra" (Musa paradisiaca) to develop biodegradable films. In the first stage of the work, banana starch and flour were characterized on the basis of their physicochemical, functional, and thermal properties. Both raw materials exhibited considerable starch content (94.8 and 83.2%, respectively) with high amylose (35.0 and 23.1%, respectively) and resistant starch (49.5 and 50.3%, respectively), besides fibers, proteins, and lipids. In the second stage, films based on the banana flour were prepared according to an experimental design. The results were statistically analyzed using the response surface methodology which, along with the desirability function, furnished the optimum formulation and process conditions (19% for glycerol concentration, 81 ºC for process temperature, 54 ºC for drying temperature, and 48% for relative humidity). Films produced under these conditions presented tensile strength of 9.2 MPa, elongation at break of 24.2%, Young's modulus of 583.4 MPa, water vapor permeability (WVP) of 2.1 x 10-10 g/m.s.Pa, and opacity of 51.3%. In the third stage of the work, films from banana flour and starch were produced and the effect of fibers, proteins, and lipids on the properties of the flour film was studied. The results showed that the flour film was more flexible, soluble in water and opaque as well as less crystalline and mechanically resistant than the starch film. Compared with the starch film, the microstructure of the flour film has flawed surface, less dense cross-section, and small cracks. In the fourth stage, the banana peel (byproduct from fruit processing) was treated chemically and mechanically, to obtain cellulose nanofibers. The influence of the number of passages (0, 3, 5, and 7) in a high-pressure homogenizer on the structure of the nanofibers was investigated. The treatments were able to isolate the banana fibers in the nanometer scale (10.9 - 22.6 nm). Increasing the number of passages in the homogenizer afforded more stable, more crystalline, and less long cellulose nanofibers. In the last stage, the cellulose nanofibers were incorporated into starch nanocomposites from the same source. The properties of these nanocomposites were compared with those of a starch film without nanofibers (control), in order to study the effect of this reinforcement. The nanocomposites exhibited significantly improved tensile strength, Young's modulus, water resistance, opacity, and crystallinity. A more drastic homogenization (seven passages) degraded the nanofibers, deteriorating the properties of the resulting nanocomposite. Thus, the most suitable mechanical treatment condition involved five passages. The properties of the nanocomposites are a function of the characteristics of the nanofibers, such as crystallinity, zeta potential, and aspect ratio; they also depend on the compatibility between the starch and the nanofibers, which were obtained from the same plant source / Doutorado / Engenharia de Alimentos / Doutora em Engenharia de Alimentos
286

Preparação e caracterização de fibras eletrofiadas de poliamida 6 e quitosana

Arias Arciniegas, Enrique January 2018 (has links)
Orientador: Prof. Dr. Wendel Andrade Alves / Coorientadora: Dra. Irina Marinho Factori / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, Santo André, 2018. / A técnica de eletrofiação é um método versátil para fabricar polímeros em fibras contínuas com diâmetros que variam alguns nanômetros. A alta razão superfície/volume, as dimensões nanométricas, que possibilitam obter ótimo desempenho com pouca quantidade de nanomaterial, e a alta porosidade, tornam as nanofibras eletrofiadas sistemas muito atraentes para aplicações como filtração, engenharia de tecidos, fabricação de roupas de proteção, esteiras têxteis não tecidas, feixes fibrosos orientados, até andaimes estruturados tridimensionais. Nos últimos anos, muitas estratégias sintéticas foram desenvolvidas para obter nanomateriais poliméricos unidimensionais (1D). Em particular, a poliamida 6 foi extensivamente investigada devido às suas boas propriedades mecânicas e físicas. Além disso, as suas propriedades funcionais podem ser moduladas pela adição de polieletrólitos como a quitosana. A quitosana é um polissacarídeo com excelente biocompatibilidade e admirável biodegradabilidade com atividades biológicas versáteis, como atividade antimicrobiana, baixa imunogenicidade e baixa toxicidade. Neste trabalho, é apresentada a proposta de um material, preparado por eletrofiação, composto por poliamida 6 (PA6) e quitosana (Q) de baixa massa molar. O material foi avaliado à temperatura ambiente nas proporções 100/0; 90/10; 80/20; 70/30 e 60/40 de PA6/Q. Devido às suas características intrínsecas, essas nanofibras poliméricas são atrativas para aplicações biomédicas e biotecnológicas, tais como nanocompósitos, implantes médicos e biossensores. As propriedades morfológicas e estruturais das nanofibras foram investigadas por técnicas de análise térmica (DSC, DTG e TGA), espectroscópicas (FTIR) e microscópicas (MEV). Os resultados obtidos mostraram que as nanofibras eletrofiadas apresentam uma diminuição do grau de cristalinidade com a adição da quitosana (~27 para ~16%). Revelou ainda que o processo de eletrofiação promove uma redução da cristalinidade na PA6 (~45 para ~27%). Além disso, a adição da quitosana diminuiu a temperatura de degradação da PA6 (437 ¿ 420°C), mas proporcionou a obtenção de nanofibras de diâmetro menor (~100 - ~30 nm). A intenção futura deste trabalho é aplicar essas nanofibras no campo dos biossensores, como substrato para ancoragem. O uso do dispositivo de cobre de duas hastes, como coletor no processo de eletrofiação, permitiu obter nanofibras de PA6 sem e com adição de diferentes teores de quitosana. / The electrospinning technique is a versatile method to manufacturing polymers into continuous fibers with diameters ranging a few nanometers. The high surface/volume ratio, the nanometric dimensions, that allow to obtain optimum performance with little amount of nano-material and the high porosity, make electronanofibers as very attractive systems for applications such as filtration, tissue engineering, e others, non-woven textile mats, oriented fibrous bundles, even three-dimensional structured andaimes. Over the last few years, many synthetic strategies have been developed to obtain one-dimensional polymer nanomaterials (1D). In particular, polyamide 6 has been extensively investigated cause of its good mechanical and physical properties. Their properties can be modulated by adding polyelectrolytes such as chitosan, that is a polysaccharide having excellent biocompatibility and admirable biodegradability with versatile biological activities such as antimicrobial activity, low immunogenicity and low toxicity. In this work, it is be results showed that the electrophilic blankets showed a decrease in the degree of crystallinity with the addition of chitosan (27 to 16%). It also revealed that the electrochemical process promotes a reduction of crystallinity in PA6 (45 to 27%). In addition, addition of chitosan lowered the degradation temperature of PA6 (437-420 ° C), but yielded nanofibers of smaller diameter (100 - 30 nm). The future intention of this work is to apply these nanofibers in the biosensors field, as substrate for anchorage. The use of the two-presented the proposal of a material, prepared by electro-spinning, composed of polyamide 6 (PA6) and chitosan (Q) with low molar mass. The material was evaluated at room temperature in proportions 100/0; 90/10; 80/20; 70/30 and 60/40 PA6 /Due to their intrinsic features, these polymeric nanofibers are attractive for biomedical and biotechnological applications such nanocomposites, medical implants and biosensors. The morphological and structural properties of nanofibers were investigated by thermal (DSC, DTG and TGA), spectroscopic (FTIR) and microscopic (SEM) techniques. The results showed that the electrophilic blankets showed a decrease in the degree of crystallinity with the addition of chitosan (27 to 16%). It also revealed that the electrochemical process promotes a reduction of crystallinity in PA6 (45 to 27%). In addition, addition of chitosan lowered the degradation temperature of PA6 (437-420 ° C), but yielded nanofibers of smaller diameter (100 - 30 nm). The future intention of this work is to apply these nanofibers in the biosensors field, as substrate for anchorage. The use of the two-rod copper device, as a collector in the electro-spinning process, allowed to obtain PA6 blankets without and with the addition of different contents of chitosan.
287

DEVELOPMENT OF SHAPE-MEMORY COMPOSITES BASED ON A BIODEGRADABLE POLYESTER ELASTOMER

Sonseca Olalla, Agueda 28 July 2019 (has links)
[EN] The current PhD thesis deals with the development and characterization of novel nanocomposites based on biodegradable poly(mannitol sebacate) (PMS) matrices with tailored properties and shape-memory capabilities for biomedical applications. Two types of fillers -cellulose nanocrystals (CNC) and electrospun poly(lactic acid) nanofibers (NF-PLA)- were used as reinforcement in order to induce and/or enhance the shape-memory properties of PMS matrices. Also, different crosslinking profiles and stoichiometric ratios between mannitol and sebacic acid (1:1 and 1:2) were studied and evaluated to obtain samples with low and high degrees of crosslinking. An appropriate combination of the crosslinking profile and the monomer ratio for PMS matrix, as well as the addition of low content of CNC, allowed the development of PMS/CNC nanocomposites with a wide range of mechanical properties and degradation profiles. On the other hand, highly oriented poly(lactic acid) (PLA) nanofiber mats obtained by electrospinning were embedded in the PMS matrices. An enhancement of up to 53-fold in the Young's modulus was observed for PMS/NF-PLA nanocomposites filled with 15 wt% of PLA nanofibers. The incorporation of fillers (CNC and NF-PLA) allowed the development of thermally active shape-memory nanocomposites with an enhancement of parameters such as recovery stress and shape fixity. The electrospun PLA-reinforced nanocomposites, offered the best balance of mechanical and thermal properties, as well as a greater control of the transition temperature for switching the change of shape, within a useful range of temperatures. Owing to that, these materials may be of interest as smart responsive systems in long-term biomedical applications. / [ES] La presente tesis doctoral, se centra en el desarrollo y caracterización de nuevos nanocompuestos biodegradables, a partir de matrices de poli(mannitol sebacato) (PMS) con propiedades a medida y capacidades de memoria de forma para aplicaciones biomédicas. Dos tipos de cargas -nanocristales de celulosa (CNC) y nanofibras de ácido poliláctico (NF-PLA) obtenidas mediante electrospinning- se han utilizado como refuerzo, con la finalidad de inducir y/o mejorar las propiedades de memoria de forma en matrices de PMS. Se han estudiado y evaluado diferentes tratamientos de curado y ratios de reacción entre el mannitol y ácido sebácico (1:1 y 1:2), con la finalidad de obtener muestras con bajo y alto grado de reticulación. Una combinación adecuada del tratamiento de curado y el ratio entre monómeros del PMS, así como la adición de bajos contenidos de CNC, permitió desarrollar nanocompuestos de PMS/CNC con un amplio rango de propiedades mecánicas y perfiles de degradación. Por otro lado, se han producido mats de nanofibras de ácido poliláctico (PLA) con alta orientación mediante la técnica de electrospinning, para embeberse en matrices de PMS, observándose una mejora de hasta 53 veces en el módulo de Young para nanocompuestos de PMS/NF-PLA con un 15% en peso de nanofibras. La incorporación de cargas (CNC y NF-PLA) permitió el desarrollo de nanocompuestos con memoria de forma activada térmicamente, con una mejora de parámetros tales como la fuerza de recuperación y la capacidad de fijación. Los nanocompuestos reforzados con NF-PLA obtenidas por electrospinning, ofrecieron el mejor balance de propiedades mecánicas y térmicas, así como un mayor control de la temperatura de transición para la activación del cambio de forma en un intervalo útil de temperaturas. Por todo ello, estos materiales pueden resultar de interés como sistemas activos en aplicaciones biomédicas de larga duración. / [CAT] La present tesi doctoral se centra en el desenvolupament i caracterització de nous nanocompostos biodegradables a partir de matrius de poli(mannitol sebacato) (PMS) amb propietats a mesura i capacitats de memòria de forma per a aplicacions biomèdiques. Dos tipus de càrregues -nanocristals de cel·lulosa (CNC) i nanofibres d'àcid polilàctic (NF-PLA) obtingudes mitjançant electrospinning- s'han utilitzat com a reforç amb la finalitat d'induir i/o millorar les propietats de memòria de forma en matrius de PMS. S'han estudiat i avaluat diferents tractaments de curat i ràtios de reacció entre el mannitol i àcid sebàcic (1:1 i 1:2) amb la finalitat d'obtenir mostres amb baix i alt grau de reticulació. Una combinació adequada del tractament de curat i el ràtio entre monòmers del PMS, així com l'addició de baixos continguts de CNC, va permetre desenvolupar nanocompostos de PMS/CNC amb un ampli rang de propietats mecàniques i perfils de degradació. D'altra banda, s'han produït mats de nanofibres d'àcid polilàctic (PLA) amb alta orientació mitjançant la tècnica de electrospinning, per embeure's en matrius de PMS, observant-se una millora de fins a 53 vegades en el mòdul de Young per nanocompostos de PMS/NF-PLA amb un 15% en pes de nanofibres. La incorporació de càrregues (CNC i NF-PLA) va permetre el desenvolupament de nanocompostos amb memòria de forma activada tèrmicament, amb una millora de paràmetres tals com la força de recuperació i la capacitat de fixació. Els nanocompostos reforçats amb NF-PLA obtingudes per electrospinning, van oferir el millor balanç de propietats mecàniques i tèrmiques, així com un major control de la temperatura de transició per a l'activació del canvi de forma en un interval útil de temperatures. Per tot això, aquests materials poden resultar d'interés com a sistemes actius en aplicacions biomèdiques de llarga durada. / Sonseca Olalla, A. (2015). DEVELOPMENT OF SHAPE-MEMORY COMPOSITES BASED ON A BIODEGRADABLE POLYESTER ELASTOMER [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/54129 / TESIS
288

Mise en forme de matériaux carbonés biosourcés par voie liquide / Preparation of bio-based carbon materials by wet processes

Roman, Julien 05 November 2019 (has links)
Ce travail de thèse est consacré à la mise en forme de nouveaux matériaux carbonés à partir d’un précurseur biosourcé. Les matériaux carbonés tels que les fibres de carbone utilisés dans les composites sont principalement obtenus à partir de précurseurs d’origine pétrosourcée. Ces précurseurs sont onéreux et incompatibles avec une industrie durable. L’utilisation d’un précurseur biosourcé disponible en grande quantité tel que la lignine permet de pallier ces limitations. La structure moléculaire aromatique et la teneur élevée en carbone de la lignine font d’elle un candidat idéal pour l’élaboration de matériau carboné biosourcé. La lignine a pu être transformée en divers matériaux carbonés tels que des nanofibres de carbone, des tresses de nanofibres de carbone, ou encore des objets 3D composites carbonisés. Ces matériaux ont été obtenus à partir de techniques innovantes que sont l’électrofilage et l’impression 3D. Le tressage des nanofibres de carbone ex-lignine a permis d’évaluer les propriétés mécaniques des fibres de carbone. Les propriétés électrochimiques des tresses de nanofibres de carbone ex-lignine sont apparues intéressantes pour une utilisation potentielle en tant que microélectrodes. La microstructure faiblement organisée du carbone issue de la lignine a pu être améliorée. Un traitement thermique de graphitisation ou un ajout de nanocharges carbonées ont contribué à cette amélioration. Les propriétés mécaniques, structurales et de conductivité électrique des nanofibres nanocomposites ont permis de définir l’influence de l’oxyde de graphène sur la lignine. Un effet composite entre ces deux constituants a pu être observé. L’impression 3D d’encres composites à base de lignine et d’oxyde de graphène a pu être rapportée pour la première fois afin d’élaborer des objets 3D carbonisés denses, organisés et conducteurs d’électricité. / This work is devoted to the preparation of new bio-based carbon materials. Carbon materials, such as carbon fibers used in composites, are mainly obtained from a petroleum precursor. These precursors are expensive and not compatible with a sustainable industry. The use of a bio-based precursor available in large quantities such as lignin makes it possible to overcome limitations of petroleum based precursors. The aromatic molecular structure and high carbon content of lignin make it an ideal candidate for the production of bio-based carbon material. Lignin could be transformed into various materials such as carbon nanofibers, twisted carbon nanofibers, or carbonized composite 3D structures. These materials have been obtained from innovative techniques such as electrospinning and 3D printing. Twisting of the lignin-based-carbon nanofibers allowed for measurements of their mechanical strength. The electrochemical properties of the lignin-based twisted carbon nanofibers are interesting for potential microelectrode applications. The low microstructural order of the carbon from the carbonized lignin has been improved. Graphitization treatment or addition of carbon nanofillers contributed to this improvement. The mechanical, structural and electrical properties of nanocomposite carbon nanofibers illustrate the influence of graphene oxide on lignin. A composite effect between these two components has been observed. The 3D printing of composite inks based on lignin and graphene oxide has been reported for the first time in order to elaborate dense, organized and electrically conductive 3D carbonized structures.
289

Vývoj a příprava antimikrobiálních nanostrukturních biomateriálů / Development and preparation of antimcrobial nanostructure biomaterials

Drabíková, Nela January 2021 (has links)
The presented diploma thesis deals with the optimalisation of preparation and the preparation of combined nanostructured antimicrobial biomaterials itself. In the theoretical part, a review focused on used materials and consequently preparation of nanoparticles and nanofibers was elaborated. Furthermore, the used antimicrobial substances – curcumin and ampicillin, and the principle of cytotoxicity assay were described.In practical part the optimalisation process is described. Furthermore the safety of prepared materials and used antimicrobial substances on HaCaT cell line was tested, in order to confirm their possible further use in cosmetic and pharmaceutical industry. Great part of the thesis deals with evaluation of the antimicrobial activity of used substances and prepared combined nanomaterials on multiple microorganisms from grampositive bacteria, gramnegative bacteria and yeasts. Also the release speed of antimicrobial substances from prepared nanomaterials was determined by spectrophotometer. The amount of released ampicillin from prepared nanomaterials was determined by liquid chromatography.
290

PŘÍPRAVA A VYUŽITÍ VYBRANÝCH BIOPOLYMERŮ, NANOČÁSTIC A NANOVLÁKEN PRO KOSMETICKÉ A POTRAVINÁŘSKÉ ÚČELY / PREPARATION AND APPLICATION OF SOME BIOPOLYMERS, NANOPARTICLES AND NANOFIBRES FOR COSMETICS AND FOOD

Bokrová, Jitka January 2019 (has links)
The presented doctoral thesis is focused on preparation of nanoparticles and nanofibers with natural active ingredient and testing their biological effects. Modern types of application forms were prepared from biomaterials based on one or more natural polymers. Chitosan particles were prepared from cross-linked polymer using ultrasonication. A mixture of soy lecithin and cholesterol was used for preparation of liposomes. Poly-3-hydroxybutyrate was used for preparation of combined liposomes, too. All liposome particles were prepared by ultrasonication. Nanofibers were obtained from polyhydroxybutyrate using electrospinning. Mixtures of low-molecular antioxidants obtained by extraction from natural sources were used as active ingredients. Different types of teas, barks, herbs, spices, fruits and vegetables were selected as sources of natural antioxidants. Total phenolic and flavonoid content and total antioxidant activity of extracts were determined using spectrophotometrical methods. Obtained natural extracts were subsequently used for encapsulation. Prepared application forms were characterized in terms of their physicochemical properties. Particle size was monitored by dynamic light scattering. Colloidal stability of particles in suspension was determined using zeta potential. Spectrophotometry was used to evaluate the efficiency of encapsulation of active compounds into particles. The morphology of the new type of combined PHB liposomes was monitored by electron microscopy. Chromatography was used for quantification of individual components of particles. Morphology of nanofibers and incorporation of active agent into their structure were monitored using FTIR-ATR spectroscopy and electron microscopy. Afterwards, antimicrobial, cytotoxic and genotoxic effects of preparations were evaluated. It was found that the most suitable types of extracts for liposome preparation are aqueous and lipid extracts of natural antioxidants. Prepared particles showed excellent stability and good encapsulation efficiency. The study confirmed that incorporation of polydroxybutyrate into liposome structure does not reduce neither the colloidal stability of the particle, nor the efficiency of encapsulation process. Antimicrobial and antimycotic effect of preparations against model microorganisms Micrococcus lutues, Serratia marcescens and Candida glabrata was detected. It was found that process of encapsulation increases the inhibitory effect of natural extracts of antioxidants. The safety of preparations was assessed using two human cell cultures: epidermal keratinocytes and HaCaT cell line. Assays of cell viability and plasma membrane integrity were used to determine cytotoxicity of preparations. Low toxicity of liposome particles was confirmed by a series of cytotoxic tests. Obtained data showed that association of phospholipid with PHB polymer does not cause a significant increase in cytotoxicity in human skin cells. Genotoxicity testing on model procaryotic organism confirmed zero genotoxic potential of preparations. The new type of combined particles and polymeric fibers cant thus be used as a carrier for active ingredients, complex natural extracts, antimicrobial agents and many others.

Page generated in 0.032 seconds