• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1392
  • 374
  • 174
  • 43
  • 33
  • 20
  • 16
  • 10
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 2629
  • 658
  • 573
  • 484
  • 378
  • 368
  • 307
  • 301
  • 226
  • 189
  • 182
  • 179
  • 161
  • 153
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
751

Probing Surface Chemistry at the Nanoscale Level

René-Boisneuf, Laetitia 30 November 2011 (has links)
Studies various nanostructured materials have gained considerable interest within the past several decades. This novel class of materials has opened up a new realm of possibilities, both for the fundamental comprehension of matter, but also for innovative applications. The size-dependent effect observed for these systems often lies in their interaction with the surrounding environment and understanding such interactions is the pivotal point for the investigations undertaken in this thesis. Three families of nanoparticles are analyzed: semiconductor quantum dots, metallic silver nanoparticles and rare-earth oxide nanomaterials. The radical scavenging ability of cerium oxide nanoparticles (CeO2) is quite controversial since they have been labeled as both oxidizing and antioxidant species for biological systems. Here, both aqueous and organic stabilized nanoparticles are examined in straightforward systems containing only one reactive oxygen species to ensure a controlled release. The apparent absence of their direct radical scavenging ability is demonstrated despite the ease at which CeO2 nanoparticles generate stable surface Ce3+ clusters, which is used to explain the redox activity of these nanomaterials. On the contrary, CeO2 nanoparticles are shown to have an indirect scavenging effect in Fenton reactions by annihilating the reactivity of Fe2+ salts. Cadmium selenide quantum dots (CdSe QD) constitute another highly appealing family of nanocolloids in part due to their tunable, size-dependent luminescence across the visible spectrum. The effect of elemental sulfur treatment is investigated to overcome one of the main drawbacks of CdSe QD: low fluorescence quantum yield. Herein, we report a constant and reproducible quantum yield of 15%. The effect of sulfur surface treatment is also assessed following the growth of a silica shell, as well as the response towards a solution quencher (4-amino-TEMPO). The sulfur treated QD is also tested for interaction with pyronin Y, a xanthene dye that offers potential energy and electron transfer applications with the QD. Interaction with the dye molecule is compared to results obtained with untreated quantum dots, as well as CdSe/ZnS core shell examples. In another chapter of this thesis, the catalytic potential of silver nanoparticles is addressed for the grafting of polyhydrosiloxane polymer chains with various alkoxy groups. A simple one-pot synthesis is presented with silver salts and the polymer. the latter serves as a mild reducing agent and a stabilizing ligand, once silver nanoparticles are formed in-situ. We evaluate the conversion of silane into silyl ethers groups with the addition of several alcohols, whether primary, secondary or tertiary, and report the yields of grafting under the mildest conditions: room temperature, under air and atmospheric pressure.
752

Pattern collapse in lithographic nanostructures: quantifying photoresist nanostructure behavior and novel methods for collapse mitigation

Yeh, Wei-Ming 09 April 2013 (has links)
The Microelectronics industry has continuously pushed the limit of critical dimensions to sub-20 nm. One of the challenges is pattern collapse, caused by unbalanced capillary forces during the final rinse and drying process. The use of surfactants offers a convenient method to reduce capillary forces but causes another deformation issue. This thesis work focuses on alternative approaches that are compatible with lithographic processes to mitigate pattern collapse. First, an e-beam lithography pattern with a series of varying line and space widths has been specifically designed in order to quantitatively study pattern collapse behavior. This pattern generates increasing stress in the pairs of resist lines as one moves across the pattern array and eventually a sufficiently small space value (critical space, S1c) is reached in each array such that the stress applied to the resist exceeds the critical stress (σc) required for pattern bending and subsequently feature deformation and collapse occurrs. The patterns we designed allow us to qualitatively and quantitatively study pattern collapse and obtain consistent, reproducible results. In the first part of the thesis work, a quick surface crosslink (called a reactive rinse) that involves the strengthening of the resist using crosslinking via carbodiimide chemistry while the resist structures are still in their wet state, has been developed and demonstrated. This technique provides efficient and significant improvement on the pattern collapse issue. In the second part of the thesis work, a triethoxysilane compound, vinyl ether silane (VE), has been successfully synthesized. It can be used to modify the silicon or silicon nitride substrates and form a covalent bond with the resist film instead of manipulating the surface energies using common HMDS. Compared to traditional Hexamethyldisilazane (HMDS) vapor primed surfaces, the implementation of the VE adhesion promoter resulted in a significant improvement in the adhesion and resistance to adhesion based pattern collapse failure in small sub-60 nm resist features. In the third part of the thesis work, the effect of drying rates and drying methods has been systematically studied. SEM analysis and critical stress results showed that fast drying appear to reduce the resist collapse. The line pair orientations in each pattern array with respect to the wafer radius reveal an apparent effect of fluid flow and centrifugal forces on collapse. Finally, a comprehensive pattern collapse model that incorporates adhesion based pattern failure and elastoplastic deformation-based failure, and dimensionally dependent resist modulus properties has been developed. This model provides such an excellent prediction of the experimental data and supports the idea that this level of combined adhesion-failure and elastoplastic-failure based pattern collapse modeling, where one explicitly considers the dimensionally dependent mechanical properties of the resist can be quantitatively predictive and useful for understanding the pattern collapse behavior of polymeric nanostructures.
753

Biodistribution of Cadmium Selenide/Zinc Sulfide Quantum Dots in Aquatic Organisms

January 2011 (has links)
This thesis investigates the biodistribution and toxicological effects of amphiphilic polymer coated CdSe/ZnS quantum dots (QDs) in two aquatic species, Daphnia magna (daphnia) and Danio rerio (zebrafish). The use of QDs in the life sciences has become common practice over the past decade. In addition QDs are being incorporated in commercially available light emitting diodes and photovoltaic solar cells. As the widespread commercial use of QDs increases, environmental release is inevitable, and water will contain the highest environmental concentrations based on life cycle assessments. Despite increased attention to the aquatic toxicology of nanomaterials in recent years, little information exists on the biological fate of QDs in aquatic organisms. Quantitative data on the uptake and excretion of QDs from daphnia and zebrafish were collected using fluorescence imaging paired with metal analysis. First, daphnia were examined after aqueous and dietary exposure to amphiphilic polymer coated CdSe/ZnS QDs. Surface coating influenced QD acute toxicity and high particle aggregation correlated with daphnia mortality. QDs were readily ingested by daphnia and accumulated in the intestines. High body burdens of 150-200 μg/g were found in the daphnia, with intestinal QD concentrations significantly elevated above the exposure media concentration. The slow elimination observed in daphnia suggested that trophic transfer of QDs to higher organisms may occur. Using daphnia and zebrafish as a model food chain revealed that QDs can transfer to zebrafish through dietary exposure with body burdens of 8-9.5 μg/g found. However, no biomagnification between daphnia and zebrafish was observed and the biomagnification factor (BMF = 0.04) was significantly less than one. This work demonstrates that aqueous and dietary exposures to QDs can result in high total body concentrations in aquatic organisms with little to no gross toxicity. The low acute toxicity observed for some surface coated QDs encourages further design optimization to improve the biocompatibility and reduce the environmental impact of QDs.
754

Ordered Micro-/Nanostructure Based Humidity Sensor for Fuel Cell Application

Wang, Yun 27 September 2010 (has links)
Humidity sensors are one of the most widely used sensors in commercial and industrial applications for environmental monitoring and controlling. Although related technology have been studied intensively, humidity sensing in harsh environments still remains a challenge. The inability of current humidity sensors to operate in high temperature environments is generally due to the degradation of the sensing films caused by high temperature, high humidity level, and/or contamination. Our goal is the design and fabrication of a humidity sensor that is capable of working under high temperatures and in a condensing environment. The targeted application of this sensor is in the polymer electrolyte membrane (PEM) fuel cell, where humidity control is crucial for performance optimization. In this work, ordered macroporous silicon is thoroughly studied as a humidity sensing layer. In addition to the advantages of traditional porous silicon for gas sensing (high resistance to high temperature and good compatibility with current IC fabrication process), the ordered macroporous silicon used in these experiment has uniform pore size, pore shape and distribution. All the vertical aligned pores can be opened to the environment at both ends, which can significantly increase the efficiency of gas diffusion and adsorption. Moreover, this special structure opens the door to uniform surface modifications for sensing enhancement. Both ordered macroporous silicon based heterostructure and self-supporting membrane are fabricated and investigated as a humidity sensor. Heterostructure sensors with different thin film surface coatings including bare Si, thermally grown SiO2, atom layer deposited ZnO, HfO2, and Ta2O5 are characterized. Post micro-fabrication is achieved on this ordered porous structure without affecting the material and its sensing properties. It has been proven that the ordered macroporous silicon with Ta2O5 surface coating shows the best sensing property due to its ultra-hydrophilic surface. The sensor shows high sensitivity, fast response times, small hysteresis, and extraordinary stability and repeatability under high temperatures and in condensing environment. It demonstrates great potential and advantages over existing commercial humidity sensors in the fuel cell application field. In addition to ordered macroporous silicon, well aligned 1D ZnO nanorods/nanowires -another widely used nanostructure in gas sensing- is also investigated as humidity sensing materials. Both vertically and laterally aligned nanorods/nanowires are fabricated and tested against humidity changes. The sensors shows increasing resistance to increasing relative humidity, which is contrary to most published works so far. Possible mechanisms have been proposed in this thesis and future work has been suggested for further study. To the best of our knowledge, this work is the first to use ordered macroporous silicon and well aligned 1D ZnO nanorods/nanowires for humidity sensing.
755

A Selectivity Study on the Use of Caffeine and Theobromine Imprinted Polypyrrole Surface Electrodes

Vinjamuri, Anil Kiran Kumar 01 August 2008 (has links)
Molecularly imprinted polymers (MIPs) are proving to be very effective in development of synthetic recognition systems and are of great interest to those interested in the field of sensor technology. The use of MIPs is receiving considerable interest due to the ability to prepare recognition matrices that possess high substrate selectivity and specificity. Conducting polymers (CP) have proved to be an excellent tool for the preparation of nano-structured biologically selective systems. Polypyrrole (Ppy) is one such CP that is extensively used for the construction of bioanalytical sensors. Ppy has shown great promise primarily due to its biocompatibility and thermal stability under a variety of environmental conditions. In this study, caffeine imprinted electrodes (CIE) and theobromine imprinted electrodes (TIE) were prepared. This research project subsequently focused on three main aspects: 1) to determine the selectivity of a caffeine and theobromine imprinted MIP using Ppy as the conducting polymer matrix, 2) comparing pulsed amperometric detection (PAD) and electrical impedance spectroscopy (EIS), for their value as potential detection schemes and 3) to determined the applicability of the molecularly imprinted polypyrrole by analyzing commercial samples of instant coffee and tea and comparing results to that obtained from established HPLC procedures. In summary, the following conclusions are stated: - Both PAD and EIS measurements taken from CIE and TIE MIPs showed no statistical difference in response at the 95% confidence level using a standard paired t-test. - Reproducibility for both MIPs was estimated by calculating an average percent relative standard deviation (%RSD) for the corresponding MIPs and was determined to be less than 3%. - The degree of selectivity was estimated by calculating a % relative error for the CIE and TIE electrodes using both PAD and EIS analysis. These results revealed percent relative errors typically less than 5% for equimolar amounts of “interfering” analyte. - A ruggedness revealed that over the concentration range and time interval tested (1-20 mM and 5 days), the average percent relative standard deviation was determined to be less that 7%. - The caffeine content in the coffee sample analyzed, as determined by PAD and EIS, was consistent with results obtained by HPLC analysis however, the theobromine content determined in tea using PAD and EIS was significantly different from that determined by HPLC at the 95% confidence level.
756

Molecular Imaging and Sensing Using Plasmonic Nanoparticles

Crow, Matthew James January 2010 (has links)
<p>Noble metal nanoparticles exhibit unique optical properties that are beneficial to a variety of applications, including molecular imaging. The large scattering cross sections of nanoparticles provide high contrast necessary for biomarkers. Unlike alternative contrast agents, nanoparticles provide refractive index sensitivity revealing information regarding the local cellular environment. Altering the shape and composition of the nanoparticle shifts the peak resonant wavelength of scattered light, allowing for implementation of multiple spectrally distinct tags. In this project, nanoparticles that scatter in different spectral windows are functionalized with various antibodies recognizing extra-cellular receptors integral to cancer progression. A hyperspectral imaging system is developed, allowing for visualization and spectral characterization of cells labeled with these conjugates. Various molecular imaging and microspectroscopy applications of plasmonic nanoparticles are then investigated. First, anti-EGFR gold nanospheres are shown to quantitatively measure receptor expression with similar performance to fluorescence assays. Second, anti-EGFR gold nanorods and novel anti-IGF-1R silver nanospheres are implemented to indicate local cellular refractive indices. Third, because biosensing capabilities of nanoparticle tags may be limited by plasmonic coupling, polarization mapping is investigated as a method to discern these effects. Fourth, plasmonic coupling is tested to monitor HER-2 dimerization. Experiments reveal the interparticle conformation of proximal HER-2 bound labels, required for plasmonic coupling-enhanced dielectric sensing. Fifth, all three functionalized plasmonic tags are implemented simultaneously to indicate clinically relevant cell immunophenotype information and changes in the cellular dielectric environment. Finally, flow cytometry experiments are conducted utilizing the anti-EGFR nanorod tag to demonstrate profiling of receptor expression distribution and potential increased multiplexing capability.</p> / Dissertation
757

Framing and Assessing Environmental Risks of Nanomaterials

Hendren, Christine Ogilvie January 2010 (has links)
<p>Nanomaterials are being increasingly produced and used across a myriad of applications while their novel properties are still in the midst of being designed and explored. Thus the full implications of introducing these materials into the environment cannot be understood, yet the need to assess potential risks is already upon us. This work discusses a comprehensive view of environmental impact with respect to material flows from across the value chain into all compartments of the environment, whereby interactions and potential hazardous effects become possible. A subset of this broad system is then chosen for evaluation; a model is derived to describe the fate of nanomaterials released to wastewater. </p><p>This analysis considers the wastewater treatment plant (WWTP) as a complete mixed reactor aerobic secondary clarifier, and predicts whether nanomaterials will associate with effluent or sludge to project potential concentrations in each. The concentration of nanomaterials reaching a WWTP is estimated based on a linear weighting of total production, and the fate of nanomaterials within the WWTP is based on a characteristic inherent to the material, partition coefficient, and on design parameters of the WWTP, such as retention times and suspended solids concentration. </p><p>Due to the uncertainty inherent to this problem, a probabilistic approach is employed. Monte Carlo simulation is used, sampling from probability distributions assigned to each of the input parameters to calculate a distribution for the predicted concentrations in sludge and effluent. Input parameter distributions are estimated from values reported in the literature where possible. Where data do not yet exist, studies are carried out to enable parameter estimation. In particular, nanomaterial production is investigated to provide a basis to estimate the magnitude of potential exposure. Nanomaterial partitioning behavior is also studied in this work, through laboratory experiments for several types of nano-silver. </p><p>The results presented here illustrate the use of nanomaterial inventory data in predicting environmentally relevant concentrations. Estimates of effluent and sludge concentrations for nano-silver with four different types coatings suggest that these surface treatments affect the removal efficiency; the same nanomaterial with different coatings may have different environmental fates. Effluent concentration estimates for C60 and nano-TiO2 suggest that these nanomaterials could already be present at problematic concentrations at current levels of annual production.</p><p>Estimates of environmentally relevant concentrations may aid in interpretation of nanotoxicology studies. These relative estimates are also useful in that they may help inform future decisions regarding where to dedicate resources for future research. Beyond attempting to estimate environmental concentrations of nanomaterials, this type of streamlined model allows the consideration of scenarios, focusing on what happens as various input parameters change. Production quantity and the fraction of this quantity that is released to wastewater are found to greatly influence the model estimates for wastewater effluent concentrations; in the case of wastewater sludge concentrations, the model is sensitive to those parameters in addition to solids retention time.</p> / Dissertation
758

Carbon Nanotube Synthesis for Microsystems Applications

Sunden, Erik Oscar 23 June 2006 (has links)
Modern day engineering systems research presently lacks techniques to exploit the unique properties of many nanomaterials; coupled with this challenge exists the need to interface these nanomaterials with microscale and macroscale platforms. A nanomaterial of particular interest is the carbon nanotube (CNT), due to its enhanced physical properties. In addition to varied electrical properties, the CNT has demonstrated high thermal conductivity and tensile strength compared to conventional fiber materials. CNTs are beginning to see commercial applications in areas in which sufficient study has been dedicated. While a large part of the worldwide focus of CNT research has been in synthesis, an equally important area of research lies in CNT integration processes. The unique and useful properties of many nanostructured materials will never be realized in mainstream manufacturing processes and commercial applications without the proper exploration of integration methods such as those detailed in this thesis. The primary motivation for the research detailed in this thesis has been to develop CNT synthesis processing techniques that allow for novel interfacing methods between carbon nanotubes and eventual applications. In this study, an investigation was performed to look at several approaches to integrating CNTs into micro-electromechanical systems (MEMS). Synthesis of CNTs was studied in two different settings. Synthesis was first performed, directly on the microsystem, via a global scale chemical vapor deposition (CVD) process. Secondly, synthesis was performed directly onto a microsystem device via localized resistive heating. Following synthesis, the application of atomically layered, protective coatings was then investigated. Integration methods were then investigated to allow for CNT transfer to microsystem applications incapable of withstanding synthesis temperatures. The developed integration methods were evaluated by creating functional microscale electrical circuits in flexible substrates via hot emboss imprint lithography. Lastly, post synthesis processing methods were used to create micropatterned cell guidance substrates as well as neuronal stimulating substrates.
759

Synthesis and characterization of carbon nanotubes using scanning probe based nano-lithographic techniques

Gargate, Rohit Vasant 15 May 2009 (has links)
A novel process which does not require the traditional Chemical Vapor Deposition (CVD) synthesis techniques and which works at temperatures lower than the conventional techniques was developed for synthesis of carbon nanotubes (CNT). The substrates used for this study involved MEMS (Micro Electrical Mechanical Systems) elements and passive elements. These were coated with Fullerene using Physical Vapor Deposition or through a solution in an organic solvent. Catalyst precursors were deposited on these Fullerene coated substrates using “wet processes”. These substrates were then heated using either the integrated microheaters or external heaters in an inert atmosphere to obtain CNT. Thus, in this process we tried to obviate the Chemical Vapor Deposition (CVD) process for synthesis of CNT (SWCNT and MWCNT). The synthesized CNT will be characterized using Scanning Electron Microscopy and Raman spectroscopy techniques. Also, conductivity measurements were carried out for the synthesized tubes using Dry (contact based) and Wet (electro-chemical) methods. This work also proves the concept for the feasibility for a portable hand held instrument for synthesis of CNT with tunable “on demand” chirality.
760

Nanotechnology for Solar-hydrogen Production via Photoelectrochemical Water-splitting: Design, Synthesis, Characterization, and Application of Nanomaterials and Quantum Dots

Alenzi, Naser D. 2010 December 1900 (has links)
Hydrogen production by water-splitting using solar energy and nanostructure photocatalysts is very promising as a renewable, efficient, environmentally clean technology. The key is to reduce the cost of hydrogen production as well as increase the solar-to-hydrogen conversion efficiency by searching for cost-effective photocatalytic materials. In this dissertation, energy efficiency calculation was carried out based on hydrogen production observation to evaluate the nanomaterials activity. The results are important to gain better understanding of water-splitting reaction mechanism. Design, synthesis, characterization/properties and application of these nanomaterials was the road-map to achieve the research objectives. The design of TiO2 is selected based on unique photocatalytic and photovoltaic properties and high stability in aqueous solution. Various structures of nanocomposites TiO2 were designed according to their characteristics and potential activity. TiO2 with quantum dots, nanocomposites thin film, nanofibers, nanorods, nanowires (core/shell), nanotubes, nanopowders, nanoparticles, and nanosphere decorated with low cost metals, sensitized with dye, and doped with nitrogen are designed. Green physical and chemical synthesis methods such as sol-gel techniques, autoclave, microwave, electrospinning, wet impregnation, hydrothermal, chemical vapor deposition, template-based fabrication (porous anodic aluminium oxide membrane), drop casting, dip coating, wet coating were used to synthesize and fabricate the nanomaterials and quantum dots.Both bottom-up and top-down synthesis techniques were used. The ability to control and manipulate the size, shape/geometry, crystal structure, chemical compositions, interaction and interface properties of these materials at nano-scale during the synthesis enable to enhance their thermal, optical, chemical, electrical, …etc properties. Several characterization techniques such as XRD, XPS, EDS, SEM, UV-visible spectra, and optical microscopic and digital camera were also obtained to characterize the properties and confirm to achieve the desired design. The application or processing to test the activity of these nanomaterials for hydrogen production by water-splitting was conducted through extensive experimental program. It was carried out in a one photo-single column experimental set-up to detect hydrogen evolution. A high throughput screening process to evaluate single photo reduction catalysts was established here for simplicity, safety, cost-effective and flexibility of testing nanomaterials for water photoreduction reactivity and hydrogen generation. Therefore, methanol as electron donor or oxidation agent was mixed with water in equal volume ratio in order to prevent the oxygen evolution and only measured the time course of hydrogen production. The primary objectives of this study is to investigate the following (1) The structure-properties relationship through testing quantum dots, nanocomposites thin film, nanofibers, nanorods, nanowires (core/shell), nanotubes, nanopowders, nanoparticles, nanospheres of TiO2 decorated with metals, dye sensitization, and nitrogen-doping. (2) The role of adding electron donors/relays to solution and their effect on semiconductor surface-electrolyte interface under constant conditions such as KI, Mv 2, NaCl, NaHCO3, sea and pure water. (3) Band gap and defect engineering by cation and anion doping. (4) Quantum dots and dye sensitization effect. The nanomaterials activity evaluated based on observed hydrogen production rate (μmol/h/g) experimentally and based on the energy efficiency (percent) calculation. Major findings in this dissertation are (1) A high throughput screening process to evaluate single photoreduction catalysts for solar-hydrogen production by water-splitting was established. (2) nanofibers structure of TiO2 doped with nitrogen, sensitized with dye (Rose Bengal Sodium) and quantum dots (CuInS2), and decorated with metals (Ag) showed the high solar-to-hydrogen conversion efficiency and high hydrogen production rate (3) Simple, safe, inexpensive, robust, efficient and green physical and chemical synthesis methods were used to prepare the nanomaterials and quantum dots. (4) Gaining insight and better understanding of water-splitting reaction mechanism by (a) Studying the structure-properties relationship of nanomaterials (b) Studying the role of additives on surface-interface chemistry of semiconductor and electrolyte (c) Knowing how to reduce the electron-hole recombination reactions to enhance quantum efficiency (d) Extending the absorption of nanomaterials to harness the visible light of solar spectrum radiation by doping and defect chemistry.

Page generated in 0.0401 seconds