• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1392
  • 374
  • 174
  • 43
  • 33
  • 20
  • 16
  • 10
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 2630
  • 659
  • 574
  • 484
  • 378
  • 368
  • 307
  • 301
  • 226
  • 189
  • 182
  • 179
  • 161
  • 153
  • 152
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Sistemas supramoleculares e nanodispositivos baseados em complexos terpiridínicos / Supramolecular chemistryand nanodevices basedon terpyridine complexes

Juliano Alves Bonacin 22 May 2007 (has links)
A construção de sistemas metal-orgânicos supramoleculares através da exploração da conectividade de ligantes terpiridínicos e o desenvolvimento de suas aplicações em nanodispositivos, são tratados nesta tese. Foram desenvolvidos novos complexos de ferro e rutênio com ligantes terpiridínicos funcionalizados, capazes de gerar filmes finos e apresentar interações supramoleculares do tipo hóspede-hospedeiro. Esses complexos foram empregados na modificação de superfícies de dióxido de titânio, visando aplicações em sensores e dispositivos fotoeletroquímicos. Modificando-se o dióxido de titânio nanocristalino, com moléculas hospedeiras de carboxi-metil-β-ciclodextrina, foi possível gerar um sistema seletivo para fotodegradação de compostos aromáticos, como demonstrado para o complexo bis(4\'-(4-bromo-fenil)-2,2\':6\',2\'\'-terpiridina)ferro(II), cujo descoramento foi observado efetuando-se a fotoirradiação no ultravioleta. Esse sistema foi aprimorado para gerar um dosímetro de UV, com base nesse princípio. Além disso, foram feitos estudos de eletropolimerização desse complexo e sobre a capacidade dos filmes moleculares gerados, de atuarem em sensores amperométricos na detecção de espécies químicas relevantes, como os íons nitrito. Outro complexo sintetizado foi o [Ru(c-ph-terpy)(Q)(NCS)], em que c-ph-terpy é a 4\'-(4-carboxi-fenil)-2,2\':6\',2\'\'-terpiridina e Q é o ligante 8-oxiquinolinato. Esse complexo terpiridínico foi desenvolvido para ser utilizado como fotossensibilizador em células solares do tipo Grätzel, tanto na forma direta, como após a modificação da superfície de dióxido de titânio com a carboxi-metil-β-ciclodextrina. Demonstrou-se que através da sua inclusão na cavidade supramolecular, o fotossensibilizador aumenta a eficácia da fotoconversão de energia. Finalmente, foi sintetizada uma nova supermolécula a partir da auto-montagem coordenativa entre a tetra-piridilporfirina e complexos de rutênio(II) coordenados com ligantes oxalato e 4-cloro-2,2\':6\',2\'\'-terpiridina. Foi observado que essa supermolécula apresenta atividade catalítica de oxidação de substratos orgânicos, associada aos grupos periféricos. Os vários sistemas estudados possibilitaram avançar nas estratégias de engenharia supramolecular, através da construção de novos conectores, blocos de montagem e filmes moleculares, bem como avaliar algumas de suas aplicações nanotecnológicas. / This thesis deals with the development of new metal-organic supramolecular systems based on functionalized terpyridine compounds, including their application in nanotechnological devices. New iron and ruthenium coordination compounds incorporating terpyridine ligands have been obtained, and their ability to generate thin films and participate in host-guest interactions has been conveniently explored. Such complexes have been employed in the modification of titanium dioxide surfaces, for applications in sensors and photoeletrochemical cells. By combining nanocrystalline titanium dioxide with carboxy-methyl-β-cyclodextrin, a novel, efficient strategy has been devised for photodegradation of aromatic compounds, and successfully demonstrated after anchoring the bis(4\'-(4-bromophenyl)-2,2\':6\'2\'\'-terpyridine)iron(II) complex and monitoring its bleaching by exposing to UV radiation. In this way, this system has been successfully employed in the design of a novel, versatile UV dosimeter. Electropolymerization studies have also been carried out on this complex, in order to generate molecular films for use in amperometric sensors, capable of probing relevant species, such as the nitrite ions. Another compound dealt with in this work was [Ru(c-ph-terpy)(Q)(NCS)], where c-ph-terpy = 4\'-(4-carboxy-pheny)-2,2\':6\',2\'\'-terpyridine, and Q = 8-oxyquinolinate ligand. This terpyridine complex has been designed as fotosensitizer in Grätzel\'s photoelectrochemical cells, by its direct coating on the titanium dioxide nanoparticles or by performing their previous treatment with carboxi-methyl-β-cyclodextrin. It has been shown that the inclusion into the cyclodextrin cavity improves the performance of the photosensitizer for energy conversion. Finally, a new supermolecule encompassing a central tetrapyridylporphyrin unity attached to four chloro(oxalate)(4-chloro-2,2\':6\',2\'\'-terpyridine)ruthenium(II) complexes, has been synthesized. This species exhibits catalytic activity in the oxidation of organic compounds. The reported study, involving several systems, has contributed to the available molecular engineering strategies, through the building up of new connecting groups and molecular films, and has also allowed the exploitation of some of their possible nanotechnological applications
712

SinterizaÃÃo de NanopartÃculas de NiAL2O4 por Gelatina ComestÃvel / Sintering of Nanoparticles by NiAL2O4 Edible Gelatin

NÃbia Alves de Souza Nogueira 20 June 2005 (has links)
FundaÃÃo de Amparo à Pesquisa do Estado do Cearà / A gelatina comestÃvel usada como precursor orgÃnico no mÃtodo sol-gel protÃico gerou nanopartÃculas de Aluminato de NÃquel (NiAL2O4 ). Foram elaborados seis sÃries de soluÃÃes preparadas com gelatina comestÃvel, Ãgua e sais de Ni (NiCL2.6H2O) e de AL (ALCL3.6H2O) ou (AL(NO3)3 9H2O), sendo a razÃo de Ni:AL de 1:4. Cinco sÃries foram submetidas a secagem e sinterizaÃÃo em temperatura variando de 500ÂC a 1000ÂC com intervalos de 100ÂC sob uma taxa de aquecimento de 10 C/min. A sÃrie restante seguiu o mesmo processo, entretanto foi mantida em temperatura constante de 800ÂC e variando o tempo, sendo doze(12h), nove(9h),seis(6h) e trÃs(3h) horas. Nas temperaturas acima de 700ÂC foram obtidos cristais bastante uniformes de NiAL2O4, mas em geral, na temperatura de 800ÂC foram encontrados os menores tamanhos de partÃcula, atà cerca de 5nm. Com base na difraÃÃo de raios-X (DRX) do material sintetizado foi feitaa caracterizaÃÃo estrutural pelo MÃtodo Rietveld de refinamento, com essa anÃlise foram obtidos parÃmetros estruturais como concentraÃÃo de fases cristalinas, tamanho das partÃculas e a morfologia da estrutura. O tamanho das partÃculas obtido usando a fÃrmula de Scherrer foi comparado com o valor obtido pelo grÃfico de Williamsom-Hall, bem como a microdeformaÃÃo das amostras foi calculada com base nesse grÃfico. Algumas amostras foram submetidas à analise de DSC para determinar as variaÃÃes de energia . Algumas amostras foram submetidas à analise de B.E.T como forma de determinar Ãrea superficial do material, importante parÃmetro para aplicaÃÃo em catÃlise. Observou-se que foi bastante viÃvel a obtenÃÃo do NiAL2O4 via mÃtodo sol-gel protÃico e que o material obtido apresentou boas propriedades para aplicaÃÃo em catÃlise e para indÃstria da pigmentaÃÃo.
713

Nanocristais de ácido orótico: preparação e caracterização físico-química / Orotic acid nanocrystals: preparation and physical-chemical characterization

Compri, Jéssica de Cássia Zaghi 04 March 2016 (has links)
A malária é uma doença infecciosa aguda ou crônica causada por parasitas do gênero Plasmodium. Estima-se a ocorrência de 110 milhões de novos casos ao ano e cerca de um a dois milhões de óbitos em todo o mundo como decorrência da infecção. O ácido orótico ou vitamina B13 possui baixa solubilidade em praticamente todos os solventes, tal característica limita seu uso em preparações farmacêuticas. Quanto ao seu mecanismo de ação, o composto demonstrou atividade na inibição da diidroorotase e da diidroorotato desidrogenase, enzimas utilizadas no ciclo de replicação da malária, e também em outras enzimas da síntese das pirimidinas. Considerando seu potencial na terapêutica antimalárica, a baixa solubilidade do ácido orótico constitui limitação para o desenvolvimento de medicamento. Devido a sua simplicidade e vantagem em relação às outras estratégias existentes, a obtenção de nanocristais têm revelado elevado potencial para solucionar problemas associados à baixa velocidade de dissolução de fármacos, em especial aqueles com baixa solubilidade. O objetivo do presente trabalho foi a obtenção de nanocristais de ácido orótico empregando moagem à alta energia, bem como sua caracterização físico-química. Foram obtidos nanocristais de ácido orótico com redução de até 350 vezes no tamanho de partícula em relação a matéria-prima utilizada. Os ensaios para a caracterização físico-química evidenciaram comportamentos térmico e estrutural diferenciado do ácido orótico nanonizado. A solubilidade de saturação dos nanocristais de ácido orótico foi aumentada em até 13 vezes. A utilização do Povacoat® na produção dos nanocristais permitiu a obtenção de formulações mais estáveis, com melhor aspecto e com características físico químicas desejáveis à uma formulação contendo nanocristais. Adicionalmente, as formulações preparadas com o Povacoat® contendo até 13% de ácido orótico apresentaram toxicidade suave. Desse modo, os nanocristais de ácido orótico demonstram potencial como fármaco inovador para o tratamento da malária. / Malaria is an acute or chronic infection caused by parasites of the genus Plasmodium. It is estimated to occur than 110 million new cases per year and about one to two million deaths worldwide as a consequence of infection. The vitamin B13 or orotic acid has low solubility in almost all solvents, this characteristic limits their use in pharmaceutical preparations. Regarding its mechanism of action, the compound has demonstrated activity in inhibiting dihydroorotate dehydrogenase and diidroorotase, enzymes used in the replication cycle of malaria, and also other enzymes of the synthesis of pyrimidines. Considering their potential in antimalarial therapy, the low solubility of orotic acid constitutes a limitation for the development of medicine. Due to its simplicity and advantage over other existing approaches, obtaining nanocrystals have revealed high potential to solve problems associated with low dissolution rate of drugs, especially those with low solubility. The objective of this study was to obtain orotic acid nanocrystals using the high energy ball milling as well its physical chemical characterization. There were obtained nanocrystals orotic acid with reduction of 350 times in particle size in relation to the original material used. The tests for the physicochemical characterization showed thermal behavior and different structural nanonizado orotic acid. The saturation solubility of the nanocrystals orotic acid was increased to 13 times. The use of Povacoat® in the production of nanocrystals allowed obtaining more stable compositions with improved appearance and desirable physicochemical characteristics to a formulation containing nanocrystals. Additionally, the formulations prepared with the Povacoat® containing up to 13% of orotic acid showed mild toxicity. Thus, orotic acid nanocrystals demonstrate potential as a novel drug for the treatment of malaria.
714

Modeling and experimental analysis of electrospinning bending region physics in determining fiber diameter for hydrophilic polymer solvent systems

Cai, Yunshen 10 March 2017 (has links)
Electrospinning produces submicron fibers from a wide range of polymer/solvent systems that enable a variety of different applications. In electrospinning process, a straight polymer/solvent charged jet is initially formed, followed by a circular moving jet in the shape of a cone, called the bending region. The process physics in the bending region are difficult to study since the jet diameter cannot be measured directly due to its rapid motion and small size (~microns and smaller), and due to complex coupling of multiple forces, mass transport, and changing jet geometry. Since the solutions studied are hydrophilic, they readily absorb ambient moisture. This thesis explores the role of the bending region in determining the resulting electrospun fiber diameter through a combined experimental and modeling analysis for a variety of hydrophilic polymer/solvent solutions. Electrospinning experiments were conducted over a broad range of operating conditions for 4 different polymer/solvent systems. Comparison of the final straight jet diameters to fiber diameters reveals that between 30% to 60% jet thinning occurs in the bending region. These experiments also reveal that relative humidity significantly affects the electrospinning process and final fiber diameter, even for non-aqueous solutions. A model is developed to obtain insight into the bending region process physics. Important ones include understanding the mass transport for non-aqueous hydrophilic jets (including solvent evaporation and water absorption on the jet surface, radial diffusion, and axial advection), and the coupling between the mass and force balances that determines the final fiber diameter. The absorption and evaporation physics is validated by evaporation experiments. The developed model predicts fiber diameter to within of 8%, even though the solution properties and operating conditions that determines net stretching forces and net evaporation rates vary over a large range. Model analysis reveals how the net evaporation rate affects the jet length and net stretching force, both of which ultimately determine the fiber diameter. It is also shown that the primary impact of RH on the process is through occupation of the surface states that limits solvent evaporation rate, rather than the amount of water absorbed. Correlation functions between process conditions, solution properties and the resulting fiber diameters are discussed.
715

Enhanced Field Emission from Vertically Oriented Graphene by Thin Solid Film Coatings

Bagge-Hansen, Michael 01 January 2011 (has links)
Recent progress and a coordinated national research program have brought considerable effort to bear on the synthesis and application of carbon nanostructures for field emission. at the College of William and Mary, we have developed field emission arrays of vertically oriented graphene (carbon nanosheets, CNS) that have demonstrated promising cathode performance, delivering emission current densities up to 2 mA/mm2 and cathode lifetime >800 hours. The work function (&phis;) of CNS and other carbonaceous cathode materials has been reported to be &phis;∼4.5-5.1 eV. The application of low work function thin films can achieve several orders of magnitude enhancement of field emission.;Initially, the intrinsic CNS field emission was studied. The mean height of the CNS was observed to decrease as a function of operating time at a rate of ∼0.05 nm/h (I 1∼40 muA/mm2). The erosion mechanism was studied using a unique UHV diode design which allowed line-of-site assessment from the field emission region in the diode to the ion source of a mass spectrometer. The erosion of CNS was found to occur by impingement of hyperthermal H and O neutrals and ions generated at the surface oxide complex of the Cu anode by electron stimulated desorption. Techniques for minimizing this erosion are presented.;The Mo2C (&phis;∼3.7 eV) beading on CNS at previously reported carbide formation temperatures of ∼800??C was circumvented by physical vapor deposition of Mo and vacuum annealing at ∼300??C which resulted in a conformal Mo2C coating and stable field emission of 1∼50 muA/mm2. For a given applied field, the emission current was >102 greater than uncoated CNS.;ThO2 thin film coatings were presumed to be even more promising because of a reported work function of &phis; ∼2.6 eV. The fundamental behavior of the initial oxidation of polycrystalline Th was studied in UHV (p<1x10-11 Torr), followed by studies of thin film coatings on Ir and thermionic emission characteristics. Although a work function of 3.3 eV was determined by a RichardDushman plot, activation of the thin film was not achieved at T<1700??C. Rather, the deposited ThO2 film decomposed, surface diffused and aggregated into stable ThO2(111) crystallites.;Thin film ThO2 coatings deposited on CNS initially demonstrated excellent field emission (up to ∼2 muA/mm2) and apparently activated spontaneously without significant thermal energy. Fowler-Nordheim plots suggested a work function of &phis; ∼2.6 eV. Undesired beading and ThO2 surface diffusion away from active emission sites resulted in rapidly deteriorating performance at higher field emission currents. Techniques that should provide a more stable ThO2/CNS conformal coating are presented.;The impact of thin films of Mo2C and ThO2on the magnitude of field emission from carbon nanosheets (CNS) was substantial. For a given field emission current density, J ∼2 muA/mm 2, the necessary applied field for uncoated CNS was ∼12 V/mum, but only ∼8 V/mum when coated with Mo2C (&phis;∼3.7 eV) and ∼5 V/mum when coated with ThO2 (&phis;∼2,6 eV). The mechanism for enhanced emission and the stability of the coatings are discussed, with special focus on the activation of ThO2 thin films. The major limitation observed in these studies has been the difference in surface energy of the graphene and the coatings which resulted in a tendency for the films to bead and separate from active emission sites at elevated currents. Suggested techniques to prevent this unwanted surface diffusion are presented.
716

Nanostructured Approaches to Light Management in Thin Silicon Solar Cells and Silicon-based Tandems

January 2019 (has links)
abstract: Semiconductor nanostructures are promising building blocks for light management in thin silicon solar cells and silicon-based tandems due their tunable optical properties. The present dissertation is organized along three main research areas: (1) characterization and modeling of III-V nanowires as active elements of solar cell tandems, (2) modeling of silicon nanopillars for reduced optical losses in ultra-thin silicon solar cells, and (3) characterization and modeling of nanoparticle-based optical coatings for light management. First, the recombination mechanisms in polytype GaAs nanowires are studied through photoluminescence measurements coupled with rate equation analysis. When photons are absorbed in polytype nanowires, electrons and holes quickly thermalize to the band-edges of the zinc-blende and wurtzite phases, recombining indirectly in space across the type-II offset. Using a rate equation model, different configurations of polytype defects along the nanowire are investigated, which compare well with experiment considering spatially indirect recombination between different polytypes, and defect-related recombination due to twin planes and other defects. The presented analysis is a path towards predicting the performance of nanowire-based solar cells. Following this topic, the optical mechanisms in silicon nanopillar arrays are investigated using full-wave optical simulations in comparison to measured reflectance data. The simulated electric field energy density profiles are used to elucidate the mechanisms contributing to the reduced front surface reflectance. Strong forward scattering and resonant absorption are observed for shorter- and longer- aspect ratio nanopillars, respectively, with the sub-wavelength periodicity causing additional diffraction. Their potential for light-trapping is investigated using full-wave optical simulation of an ultra-thin nanostructured substrate, where the conventional light-trapping limit is exceeded for near-bandgap wavelengths. Finally, the correlation between the optical properties of silicon nanoparticle layers to their respective pore size distributions is investigated using optical and structural characterization coupled with full-wave optical simulation. The presence of scattering is experimentally correlated to wider pore size distributions obtained from nitrogen adsorption measurements. The correlation is validated with optical simulation of random and clustered structures, with the latter approximating experimental. Reduced structural inhomogeneity in low-refractive-index nanoparticle inter-layers at the metal/semiconductor interface improves their performance as back reflectors, while reducing parasitic absorption in the metal. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
717

Investigation into Effects of Instability and Reactivity of Hydride-Passivated Silicon Nanoparticles on Interband Photoluminescence

Radlinger, Christine Marie 24 May 2017 (has links)
While silicon has long been utilized for its electronic properties, its use as an optical material has largely been limited due to the poor efficiency of interband transitions. However, discovery of visible photoluminescence (PL) from nanocrystalline silicon in 1990 triggered many ensuing research efforts to optimize PL from nanocrystalline silicon for optical applications. Currently, use of photoluminescent silicon nanoparticles (Si NPs) is commercially limited by: 1) the instability of the energy and intensity of the PL, and 2) the low quantum yield of interband PL from Si NPs. Herein, red-emitting, hydrogen-passivated silicon nanoparticles (H-Si NPs) were synthesized by thermally-induced disproportionation of a HSiCl3-derived (HSiO1.5)n polymer. The H-Si NPs produced by this method were then subjected to various chemical and physical environments to assess the long-term stability of the optical properties as a function of changing surface composition. This dissertation is intended to elucidate correlations between the reported PL instability and the observed changes in the Si NP surface chemistry over time and as a function of environment. First, the stability of the H-Si NP surface at slightly elevated temperatures towards reactivity with a simple alkane was probed. The H-Si NPs were observed by FT-IR spectroscopy to undergo partial hydrosilylation upon heating in refluxing hexane, in addition to varying degrees of surface oxidation. The unexpected reactivity of the Si surface in n-hexane supports the unstable nature of the H-Si NP surface, and furthermore implicates the presence of highly-reactive Si radicals on the surfaces of the Si NPs. We propose that reaction of alkene impurities with the Si surface radicals is largely responsible for the observed surface alkylation. However, we also present an alternate mechanism by which Si surface radicals could react with alkanes to result in alkylation of the surface. Next, the energy and intensity stability of the interband PL from H-Si NPs in the presence of a radical trap was probed. Upon addition of (2,2,6,6,-tetramethyl-piperidin-1-yl)oxyl (TEMPO), the energy and intensity of the interband transition was observed to change over time, dependent on the reaction conditions. First, when the reaction occurred at 4ºC with minimal light exposure, the interband transition exhibited a gradual hypsochromic shift to between 595 nm and 655 nm, versus the λmax of the original low energy emission peak at 700 nm, depending on the amount of TEMPO in the sample. Second, when the reaction proceeded at room temperature with frequent exposure to 360 nm irradiation, the original interband transition at 660 nm was quenched while a new peak at 575 nm developed. Based on all the data collected and analyzed, we assign the 595 -- 655 nm transition as due to interband exciton recombination from Si NPs with reduced diameters relative to the original Si NPs. We furthermore assign the 575 nm transition as due to an oxide-related defect state resulting from rapid oxidation of photo-excited Si NPs.
718

Development of a Liquid Contacting Method for Investigating Photovoltaic Properties of PbS Quantum Dot Solids

Dereviankin, Vitalii Alekseevich 27 February 2018 (has links)
Photovoltaic (PV) devices based on PbS quantum dot (QD) solids demonstrate high photon-to-electron conversion yields. However, record power conversion efficiencies remain limited mainly due to bulk and interfacial defects in the light absorbing material (QD solids). Interfacial defects can be formed when a semiconductor, such as QD solid, is contacted by another material and may predetermine the semiconductor/metal or semiconductor/metal-oxide junction properties. The objective of the work described in this dissertation was set to explore whether electrochemical contacting using liquid electrolytes can provide sufficient means of contacting the QD solids to investigate their PV performance without introducing the unwanted interfacial defects. I have initially focused on optimizing processing conditions for efficient QD solids deposition and studied their photovoltaic properties in a standardized solid-state, depleted heterojunction solar cell configuration. Further, a liquid contacting method was developed to study the relationship between photovoltages of QD solids and the energetics (e.g. reduction potentials) of the liquid contacting media. This electrochemical contacting of PbS QD solids was achieved by using anhydrous liquid electrolytes containing fast, non-coordinating, outer-sphere redox couples. Depending on the energetics of a redox couple, both rectifying and non-rectifying (Ohmic) PbS QD solid/electrolyte junctions were successfully formed with both p- and n-type QD solids. Furthermore, application of the liquid solution contacting method in studies of the PbS QD solids has unprecedentedly demonstrated that an ideal behavior of the photovoltage changes with respect to the changes in the energetics of the contacting media can be achieved. This fact supports the initially proposed hypothesis that such liquid contacting method will not introduce surface defects to the studied QD materials, allowing for their intrinsic properties to be better understood. The applicability of this method to both p- and n- type QD solids was demonstrated. Finally, a better understanding of the relationships between the surface and ligand chemistries of both p- and n-type QD solids and their photovoltaic properties was possible via applications of such method in conjunction with XPS and UPS studies.
719

Investigation of the Acoustic Response of a Confined Mesoscopic Water Film Utilizing a Combined Atomic Force Microscope and Shear Force Microscope Technique

Kozell, Monte Allen 17 July 2018 (has links)
An atomic force microscopy beam-like cantilever is combined with an electrical tuning fork to form a shear force probe that is capable of generating an acoustic response from the mesoscopic water layer under ambient conditions while simultaneously monitoring force applied in the normal direction and the electrical response of the tuning fork shear force probe. Two shear force probes were designed and fabricated. A gallium ion beam was used to deposit carbon as a probe material. The carbon probe material was characterized using energy dispersive x-ray spectroscopy and scanning transmission electron microscopy. The probes were experimentally validated by demonstrating the ability to generate and observe acoustic response of the mesoscopic water layer.
720

Graphene as a Solid-state Ligand for Palladium Catalyzed Cross-coupling Reactions

Yang, Yuan 01 January 2018 (has links)
Palladium-catalyzed carbon-carbon cross-coupling reactions have emerged a broadly useful, selective and widely applicable method to synthesize pharmaceutical active ingredients. As currently practiced in the pharmaceutical industry, homogeneous Pd catalysts are typically used in cross-coupling reactions. The rational development of heterogeneous catalysts for cross-coupling reactions is critical for overcoming the major drawbacks of homogeneous catalysis including difficulties in the separation, purification, and quality control process in drug production. In order to apply heterogeneous catalysis to flow reactors that may overcome this limitation, the catalyst must be strongly bound to a support, highly stable with respect to leaching, and highly active. While the primary role of supports in catalysis has been to anchor metal particles to prevent sintering and leaching, supports can also activate catalytic processes. In this study, by using a xi combined theoretical and experimental method, we probed the effect of graphene as support in the complex reaction cycle of Suzuki reactions. The density functional theory study provides a fundamental understanding of how a graphene support strongly binds the Pd nanoparticles and act as both an efficient charge donor and acceptor in oxidation and reduction reaction steps. Theoretical investigations prove that the Pd-graphene interaction promotes electron flow between the metal cluster and the defected graphene to reduce reaction barrier. The ability for graphene to both accept and donate charge makes graphene an unusually suitable support for multi-step catalytic processes that involve both oxidation and reduction steps. The computer-aided catalyst design with the atomic precise accuracy demonstrates the Pd/graphene catalyst can be further optimized and the first-row transition metal nanoparticles have great potential to replace Pd to catalyze the Suzuki reaction. The corresponding experimental study shows that the method to immobilize the Pd nanoparticles on the graphene is crucial to increasing the reactivity and stability of the resulted catalyst. A comparison of the activation energy and turn over frequency for a series of supported and homogeneous catalysts indicates that exposing palladium-graphene to defect inducing microwave radiation results in dramatically lower activation energies and higher turnover frequencies. Furthermore, the heterogeneity tests demonstrate the Suzuki reactions are carried out on the surface of the immobilized Pd nanoparticle agreeing with the theoretical results. A method to engineer the 2-D graphene support to a 3-D structure to minimize the re-stacking and agglomeration of the graphene lattice will also be introduced in this study.

Page generated in 0.0679 seconds