341 |
Role of the Glycogen Synthase Kinase 3 for the Retinal Development and Homeostasis / Rôle de la Glycogène Synthase Kinase 3 dans le Développement et l'Homéostasie de la RétinePaquet-Durand, François 22 March 2018 (has links)
Les modifications post-traductionnelles (MPTs) permettent un haut degré de régulation de l'expression des gènes en générant une diversité fonctionnelle au niveau du protéome. Dans le système nerveux, les MPTs régulent entre autres des facteurs de transcription permettant une adaptation rapide à un microenvironnement dynamique. Dans ce contexte, je me suis concentrée sur l’étude des Glycogène Synthase Kinases 3 (GSK3s). Elles sont au centre de la régulation de nombreuses voies de signalisation et contrôlent la stabilité de multiples cibles par phosphorylation. Au cours du développement du cerveau, les kinases GSK3 contrôlent la balance entre la prolifération et la différenciation. La dérégulation de l'activité des kinases GSK3 a un rôle clé dans les maladies neurodégénératives du cerveau. En revanche, le rôle important de ces kinases au cours du développement rétinien ainsi que dans les maladies neurodégénératives rétiniennes reste une question ouverte.L'objectif de ma thèse était d'étudier le rôle de ces kinases au cours du développement et de l'homéostasie rétinienne. J’ai montré que l'absence totale de Gsk3α et de Gsk3β très tôt au cours du développement rétinien entraîne une microphtalmie chez l'adulte. Les deux kinases jouent des rôles redondants puisque l'expression d'un seul allèle Gsk3 est suffisante pour prévenir le phénotype de microphtalmie. Cependant, une analyse phénotypique approfondie dans ce contexte génétique (un seul allèle Gsk3) a révélé une forte augmentation du nombre de cellules ganglionnaires déplacées (dRGCs) dans la couche nucléaire interne, associée à une modification des projections axonales des cellules ganglionnaires dans le cerveau par rapport aux contrôles. Dans l’ensemble, ces données suggèrent que les kinases GSK3s sont essentielles au maintien des progéniteurs rétiniens et sont impliquées dans la genèse des dRGCs. Compte tenu du très faible nombre de dRGCs en conditions normales, la fonction de ces cellules a été très peu étudiée à ce jour. Le modèle génétique que j’ai développé offre par conséquent un modèle de choix pour étudier l’ontogenèse et la fonction de ces cellules.Mes travaux de thèse se sont ensuite concentrés sur le rôle de GSK3 dans les photorécepteurs. En effet, des défauts de développement ou leur mort est l’une des principales causes de dégénérescence rétiniennes. Afin de mieux comprendre la fonction de ces kinases dans la maintenance des photorécepteurs, j'ai donc utilisé des souris invalidées de manière conditionnelle pour Gsk3α et Gsk3β spécifiquement dans les précurseurs des photorécepteurs. L’absence de GSK3 conduit à une altération de la maturation et de la fonction des photorécepteurs, suivie de leur dégénérescence. J’ai alors combiné des analyses transcriptomiques et des approches in vitro pour élucider les mécanismes sous-jacents. Mes données m’ont conduit à proposer un modèle selon lequel l’absence de GSK3 dans les photorécepteurs conduit à des défauts de phosphorylation de NRL (facteur de transcription nécessaire au développement des photorécepteurs de type bâtonnet), augmentant sa stabilité. Cette dérégulation post-traductionnelle conduit à la diminution d’expression d'un sous-ensemble de gènes cibles de NRL, co-régulés par CRX, et impliqués dans le développement et l'homéostasie des photorécepteurs. Cette dérégulation conduirait alors à la dégénérescence des photorécepteurs observée dans les mutants GSK3. Ce travail suggère donc que GSK3 joue un rôle essentiel dans la régulation de NRL pour contrôler la maturation et l'homéostasie des photorécepteurs. De telles données suggèrent également que ce mécanisme de régulation pourrait être déficient chez les patients atteints de rétinites pigmentaires dues à des mutations de NRL empêchant sa phosphorylation par GSK3. / Post-translational modifications (PTMs) allow a higher degree of regulation for the control of gene expression by generating functional diversity at the proteome level. In the central nervous system, PTMs regulate stability or activity of transcription factors allowing a rapid response to external signals and a quick adaptation to a dynamic cellular microenvironment. In this context, I focused on the ubiquitously expressed and highly conserved Glycogen Synthase Kinases 3 (GSK3s). They are at the crossroad of multifunctional signalling pathways. During mammalian brain development, GSK3 kinases control the balance between proliferation and differentiation. Deregulation of GSK3 kinases activity has also a key role in neurodegenerative diseases by causing the accumulation/aggregations of proteins causing neuronal cell death. Drugs targeting GSK3s hold a lot of promises to treat such diseases. Whether these kinases are also important during retinal development and involved in retinal diseases remains an open question. Several studies suggest the importance of regulating GSK3 function in photoreceptor under pathological conditions. Therefore, the main objective of my PhD was to investigate the role of these kinases during photoreceptor development and homeostasis. To better understand the role of these two kinases during retinal development and to highlight potential differences with the developing brain, we also investigated their function in the control of the balance between proliferation and differentiation of retinal progenitors. To achieve my work, I used conditional knockout mice for Gsk3α and Gsk3β specifically deleted either in photoreceptor precursors or in retinal progenitors during early development. The lack of GSK3 kinases in photoreceptor precursors led to impaired photoreceptor maturation and function followed by their degeneration. Transcriptomic analysis (RNAseq) 6, 10 and 14 days postnatally prior degeneration revealed several genes downregulated belonging to biological processes involved in eye development and visual functions. Among them, the expression of the transcription factor Nrl that is required for rod photoreceptor development was decreased. Astonishingly, NRL expression was highly increased at protein level. By in vitro approaches, I demonstrated that GSK3-dependent phosphorylation regulates NRL protein stability. Despite such increase, a large number of NRL target genes were downregulated leading to impaired photoreceptor maturation and function. Surprisingly, a vast majority of these downregulated genes were also target genes for CRX, another transcription factor working in synergy with NRL. This work demonstrates that PTMs of NRL play a critical role in fine tuning the expression of a subset of genes involved photoreceptor development and homeostasis. Such findings could allow the development of innovative therapeutic strategies for retinal dystrophies. The functional characterisation of GSK3 in the course of retinal development by invalidating both Gsk3α and Gsk3β in retinal progenitors early during development revealed their requirement for controlling cell cycle exit and neuronal differentiation. Indeed, the complete lack of Gsk3α and Gsk3β led to microphtalmia in adults. Interestingly, the expression of only one Gsk3 allele was enough to rescue the phenotype. However, further analysis revealed a large number of displaced ganglion cells in the inner nuclear layer. The function of these cells remains to be determined, but their timing of production corresponds to other ganglion cells. Strikingly, these displaced ganglion cells project in distinct brain regions than normal ganglion cells. Therefore, our work could provide the first step toward determining the function of the displaced ganglion cells, which appear at low number in wildtype but whose function remains to be clarified.
|
342 |
BBB-bypassing polysaccharide mini-GAGR activates the neuronal Nrf2- mediated antioxidant defense system for the treatment of Alzheimer’s diseaseMurphy, Kelsey E. January 2019 (has links)
No description available.
|
343 |
Edmond Rogers Dissertation, Elucidating pathological correlations between traumatic brain injury and Alzheimer’s DiseaseEdmond Rogers (15212116) 19 April 2023 (has links)
<p> </p>
<p>Traumatic Brain Injuries (TBI) are a major cause of disability and death in the United States. One of the greatest consequences of the disease is the resulting long-term damage, especially in milder injury cases where the damage is initially subclinical and thus lacking acutely observable manifestations that over time can compound significantly. Among these chronic issues, Alzheimer’s Disease (AD) is one of the most serious. While multiple studies demonstrate an increased likelihood of developing neurodegenerative diseases in response to TBI, the underlying mechanisms remain undefined and no current treatment options are available. Multiple hypotheses have been postulated based on various animal and clinical models, which have contributed a great deal to our current knowledge base and implicated several targets of interest in this pathway (i.g. oxidative stress, inflammation, disruptions in proteostasis). While extremely valuable, these <em>in vivo</em> procedures and analyses are physiologically and ethically complex: there is currently no model capable of separating and visualizing TBI-induced sub-cellular damage in the moments (seconds) immediately following injury, and the subsequent associated long-term changes (AD). In addition, no mechanistic study has been performed to link mechanical-trauma independently with neurodegeneration initiation via protein aggregation. It is clear that additional investigative tools are needed to rectify these intricate issues, and while <em>in vitro </em>methodologies generally offer the type of resolution required, no such model replicates these phenomena. Therefore, we introduce the “TBI-on-a-chip” <em>in vitro </em>concussive model, with a series of concomitant targeted-experiments to address this urgent, currently unmet need. This dissertation work describes the development of our cellular trauma model, featuring a multi-disciplinary approach that provides investigatory opportunities into cellular mechanics, molecular biology, functional alterations (electrophysiology), and morphology, in both primary and secondary injury. Utilizing this model, we directly observe evidence of impact-induced electrical/functional and biochemical consequences, in addition to isolating oxidative stress as a key, contributing component. Taken together, these collective efforts suggest that oxidative stress may be a viable target for both acute and chronic potential therapeutic interventions.</p>
|
344 |
Acute Inhibition of Aberrant Mitochondrial Fission After Traumatic Brain Injury Confers Lasting Neuroprotection Into Late AdulthoodSridharan, Preety S. 26 May 2023 (has links)
No description available.
|
345 |
EVALUATION OF GENE REGULATION AND THERAPEUTIC DRUGS RELATED TO ALZHEIMER’S DISEASE IN DEGENERATING PRIMARY CEREBROCORTICAL CULTURESBailey, Jason A. 16 March 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Alzheimer’s disease (AD) is a neurological disorder defined by the presence of plaques comprised mostly of amyloid-β (Aβ), and neurofibrillary tangles consisting of hyperphosphorylated microtubule associated protein tau (MAPT). AD is also characterized by widespread synapse loss and degeneration followed by death of neurons in the brain. Inflammatory processes, such as glial activation, are also implicated. In order to study mechanisms of neurodegeneration and evaluate potential therapeutic agents that could slow or reverse this process, a tissue culture system was developed based on primary embryonic cerebrocortical neurons. This culture system was observed to exhibit time-dependent neurodegeneration, glial proliferation, and synaptic marker loss consistent with AD-affected brains.
The regulatory promoter regions of several genes implicated in AD, including the Aβ precursor protein (APP), β-amyloid cleaving enzyme (BACE1), and MAPT, were studied in this culture model. The MAPT gene promoter activity followed the pattern of neuronal maturation and degeneration quite closely, increasing in the initial phase of the tissue culture, then reducing markedly during neurodegeneration while APP and BACE1 gene promoters remained active. Deletion series of these promoters were tested to give an initial indication of the active regions of the gene promoter regions. Furthermore, the effects of exogenous Aβ and overexpression of p25, which are two possible pathogenic mechanisms of gene regulation in AD, were studied. Response to Aβ varied between the promoters and by length of the Aβ fragment used. Overexpression of p25 increased MAPT, but not APP or BACE1, promoter activity.
This neurodegeneration model was also used to study the putative neuroprotective action of the NMDA receptor antagonist memantine. Treatment with memantine prevented loss of synaptic markers and preserved neuronal morphology, while having no apparent effect on glial activation. The protective action on synaptic markers was also observed with two other structurally distinct NMDA receptor antagonists, suggesting that the effects of memantine are produced by its action on the NMDA receptor. It is concluded that this tissue culture model will be useful for the study of gene regulation and therapeutic agents for neurodegeneration, and that the efficacy of memantine may result from preservation of synaptic connections in the brain.
|
346 |
NEUROPROTECTIVE STUDIES ON THE MPTP AND SOD1 MOUSE MODELS OF NEURODEGENERATIVE DISEASESFontanilla, Christine V. 29 February 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The main, underlying cause of neurodegenerative disease is the progressive loss of neuronal structure or function, whereby central and/or peripheral nervous system circuitry is severely and irreversibly damaged, resulting in the manifestation of clinical symptoms and signs. Neurodegenerative research has revealed many similarities among these diseases: although their clinical presentation and outcomes may differ, many parallels in their pathological mechanisms can be found. Unraveling these relationships and similarities could provide the potential for the discovery of therapeutic advances such that a treatment for one neurologic disease may also be effective for several other neurodegenerative disorders. There is growing awareness that due to the complexity of pathophysiological processes in human disease, specifically targeting or inactivating a single degenerative process or a discrete cellular molecular pathway may be ineffective in the treatment of these multifaceted disorders. Rather, potential therapeutics with a multi-target approach may be required to successfully and effectively control disease progression. Recent advances in neurodegenerative research involve the creation of animal disease models that closely mimic their human counterparts. The use of both toxin- exposure and genetic animal models in combination may give insight into the underlying pathologic mechanisms of neurodegenerative disorders (target identification) leading to the development and screening of prospective treatments and determination of their neuroprotective mechanism (target validation). Taken together, ideal candidates for the treatment of neurodegenerative disease would need to exert their neuroprotective effect on multiple pathological pathways. Previous studies from this laboratory and collaborators have shown that the naturally-occurring compound, caffeic acid phenethyl ester (CAPE), is efficacious for the treatment against neurodegeneration. Because of its versatile abilities, CAPE was chosen for this study as this compound may be able to target the pathogenic pathways shared by two different animal models of neurodegeneration and may exhibit neuroprotection. In addition, adipose-derived stem cell conditioned media (ASC-CM), a biologically-derived reagent containing a multitude of neuroprotective and neurotrophic factors, was selected as ASC-CM has been previously shown to be neuroprotective by using both animal and cell culture models of neurodegeneration.
|
347 |
Gene regulatory mechanisms underlying microglial dysfunction in Alzheimer’s diseaseDaily, Kylene Patricia 19 September 2022 (has links)
No description available.
|
348 |
Regulation of MICOS Complex in Neurodegenerative DiseasesShang, Yutong 27 January 2023 (has links)
No description available.
|
349 |
Improving AAV Retinal Gene Therapy for Batten DiseaseSchwartz, Maura Katherine January 2022 (has links)
No description available.
|
350 |
Theoretical and experimental considerations of selective vulnerability In Parkinson's diseaseBurke, Samuel 11 1900 (has links)
Les maladies neurodégénératives sont typiquement caractérisées en fonction de leurs symptômes et des observations pathologiques effectuées après le décès. Les symptômes spécifiques à la maladie sont également normalement associés aux dysfonctionnements et à la dégénérescence de certaines sous- populations spécifiques de neurones dans le système nerveux. La maladie de Parkinson (MP) est une maladie neurodégénérative principalement caractérisée par des symptômes moteurs dus à la dégénérescence spécifique des neurones dopaminergiques (DA) de la substantia nigra pars compacta (SNpc/SNc). Il semble cependant que les neurones DA de la SNc ne soient pas la seule population de neurones qui dégénère dans la MP. L'analyse post-mortem, l'imagerie in vivo et les symptômes cliniques démontrent que le dysfonctionnement et la dégénérescence se produisent dans plusieurs autres régions du système nerveux, incluant par exemple des neurones noradrénergiques (NA) du locus coeruleus (LC), des neurones sérotoninergiques des noyaux du raphé et des neurones cholinergiques du noyau moteur dorsal du nerf vague (DMV) et du noyau pédonculopontin.
Comme d'autres maladies neurodégénératives, la MP est causée par plusieurs facteurs, tant génétiques qu'environnementaux. De nombreuses observations suggèrent que ces facteurs soient associés au dysfonctionnement de plusieurs systèmes ou fonctions cellulaires incluant la production d’énergie par la mitochondrie, l’élimination de protéines dysfonctionnelles par le protéasome et le lysosome, la régulation de l’équilibre entre la production d'espèces oxydatives réactives et les mécanismes antioxydants, la régulation des niveaux de calcium intracellulaire et l’inflammation. Il semble donc que le dysfonctionnement de ces facteurs converge pour provoquer la dégénérescence neuronale dans le contexte du vieillissement. Ce qui rend les neurones de certaines régions du système nerveux intrinsèquement plus vulnérables aux facteurs associés à la MP est une question fondamentale qui n’est pas résolue pour le moment.
Les travaux de cette thèse sont basés sur l’hypothèse proposant que cette vulnérabilité sélective découle de propriétés communes retrouvées chez les neurones vulnérables. En particulier, les neurones vulnérables auraient en commun d’être des neurones de projections dotés d’un axone complexe qui projette sur de longues distances, formant un nombre très élevé de terminaisons axonales sur de vastes territoires du système nerveux. De plus, ces neurones présenteraient des propriétés physiologiques distinctives, incluant notamment une décharge autonome (pacemaker). Ensemble, ces caractéristiques pourraient contribuer à placer ces neurones dans des conditions de fonctionnement aux limites de leur capacités
bioénergétiques et homéostatiques, rendant difficile toute adaptation aux dysfonctionnements cellulaires associés au vieillissement et causés par les facteurs de risques de la MP.
Dans cette thèse, je présenterai une revue systématique de la littérature sur la perte de neurones dans le cerveau des personnes atteintes de la maladie de Parkinson, montrant que l'identité neurochimique précise des neurones qui dégénèrent dans la maladie de Parkinson, et l'ordre temporel dans lequel cela se produit, n’est pas clair. Cependant, en analysant les points de vue présentés dans les publications citant cette revue, nous avons remarqué que la majorité de ceux-ci ne reflètent pas le message central de notre publication. Puisque l’identification de l’identité des neurones vulnérables et non vulnérables à la MP est fondamentale pour le développement de théories et hypothèses sur les causes de la MP, nous suivons cette première publication avec une lettre réaffirmant l'importance de faire face aux problèmes identifiés dans notre revue.
Nous présentons ensuite des données in vitro montrant que les neurones vulnérables à la MP, comparés à ceux qui sont moins vulnérables, ont une capacité intrinsèque à développer des champs axonaux plus importants et plus complexes, avec un nombre plus élevé de sites actifs de libération de neurotransmetteurs. De plus, nous constatons que ces observations sont corrélées à une vulnérabilité plus élevée face à un stress oxydatif pertinent pour la MP. Ces données sont en accord avec l'hypothèse selon laquelle le domaine axonal, et en particulier le nombre de sites de libération de neurotransmetteurs par neurone, est un facteur important qui contribue à rendre un neurone sélectivement vulnérable dans le contexte de la MP.
Enfin, nous présentons une méthode d’analyse d’image open-source visant à aider les biologistes et les neuroscientifiques à automatiser la quantification du nombre de neurones dans des cultures primaires de neurones, telle qu’utilisée dans les travaux de cette thèse. Nous proposons que cet algorithme simple — mais robuste — permettra aux biologistes d'automatiser le comptage des neurones avec une grande précision, quelque chose de difficile à effectuer avec les autres approches open-source disponibles présentement.
Nous espérons que les travaux présentés dans cette thèse permettront de contribuer à raffiner les théories visant à expliquer l’origine de la MP et à terme, de développer de nouvelles approches thérapeutiques. / Neurodegenerative diseases are typically characterized based on their symptoms, and pathological factors identified after death. The disease-specific symptoms are due to the dysfunction and degeneration of specific subpopulations of neurons, which cause dysfunction in particular brain functions. Parkinson's disease (PD) is a neurodegenerative disease primarily characterized by motor symptoms due to the specific degeneration of dopamine (DA) neurons of the substantia nigra pars compacta (SNpc/SNc): a population of neurons essential for motor control. SNc DA neurons are, however, not the only population of neurons that degenerate in PD. Post-mortem analysis, in vivo imaging, and clinical symptoms demonstrate that dysfunction and degeneration occur in several other neuronal nuclei. These include, but are not limited to, noradrenergic (NA) locus coeruleus (LC) neurons, serotonin neurons of the raphe nuclei, and cholinergic neurons of the dorsal motor nucleus of the vagus (DMV) and pedunculopontine nucleus.
Like other neurodegenerative diseases, PD is linked to several risk factors, both genetic and environmental. The evidence suggests that these risk factors are associated with the dysfunction in systems of cellular bioenergetics (including mitochondrial function); proteostatic homeostasis; endolysosomal function; an imbalance between the production of reactive oxidative species (ROS), and antioxidant mechanisms; calcium homeostasis; alpha-synuclein misfolding; and neuroinflammation. Consequently, together with aging, these risk factors converge on causing the selective degeneration of "PD-vulnerable" nuclei. What makes these neurons intrinsically vulnerable to PD-associated risk factors is a fundamental question — and understanding these neurons will reveal biological mechanisms that we can target to protect these cells from degeneration.
Our best hypotheses to explain why these neurons are based on the observations that most PD- vulnerable neurons are long-range projection neuromodulatory neurons sharing common characteristics: projecting to voluminous territories, having very long and highly branched unmyelinated axonal domains with vast numbers of neurotransmitter release sites, and exhibiting a unique physiology such as pacemaker firing. Taken together, this suggests that these neurons function at the tail-end of their bioenergetic and homeostatic capacity, unable to tolerate any further demands, such as those incurred in the presence of risk factors associated with PD.
In this thesis, I will present a systematic review on the literature on purported cell loss in PD brains, showing that — given the actual primary evidence — the precise neurochemical identity of neurons that degenerate in PD, and the temporal order of this degeneration, is far less clear than described by most publications. This review — at the time of writing — has gone on to be highly cited. However, analyzing
the claims made in publications citing this review, we discover that the majority of claims do not reflect the core message of our publication. Since the identity of PD-vulnerable and non-PD-vulnerable neurons is fundamental to theory and hypotheses when trying to understand PD, we follow this first publication with a letter restating the importance to address our observations.
We then present in vitro data showing that classically PD-vulnerable neurons, when compared to non-PD vulnerable neurons, have an intrinsic capacity to develop larger and more complex axonal domains, with higher numbers of active neurotransmitter release sites. Moreover, we find that these observations correlate to elevated vulnerability to PD-relevant stress assays. These data provide additional support for the hypothesis that the axonal domain — and in particular — the number of active neurotransmitter sites per neuron, is a cell-autonomous factor rendering a neuron selectively vulnerable in the context of PD.
Finally, we present an open-source tool to support biologists and neuroscientists in automating the quantification of neuron numbers in medium-throughput primary cell cultures. Where the application of other open-source solutions is either too simplistic for the use-case or technically challenging to implement, this simple — yet robust algorithm — allows biologists with limited computational nous to automate neuron counting with high precision.
We hope that the work presented in this thesis will contribute to the refinement of theories aimed at explaining the origin of PD and, ultimately, to the development of new therapeutic approaches.
|
Page generated in 0.0393 seconds