• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 292
  • 161
  • 85
  • 47
  • 42
  • 15
  • 14
  • 11
  • 10
  • 9
  • 8
  • 7
  • 5
  • 3
  • 3
  • Tagged with
  • 786
  • 102
  • 96
  • 94
  • 90
  • 89
  • 76
  • 66
  • 65
  • 61
  • 56
  • 56
  • 50
  • 50
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

none

Hsu, Ying-ling 15 July 2006 (has links)
none
322

none

tseng, Yen-jie 19 July 2006 (has links)
none
323

The Relationship of Sn Whisker Growth and Sn-plating Process

Lu, Min-hsien 29 June 2007 (has links)
New environmental regulations enforce the electronic industry to replace Pb-Sn solder due to Pb could contaminate our environment. Pure Sn has good material properties such as solderability, conductivity and anti-corrosion. Pure Sn is a good candidate to replace Pb-Sn solder. One of the disadvantages of pure Sn is the whisker growth phenomenon. Whisker problem has become a major concern in electronic industry due to the trend toward component miniaturization and pitch reduction. It is well understood that the root cause for tin whisker growth is the compressive stress within the tin layer. In the literature, the main stress sources are, (1) the intermetallic layer induced interface stress, (2) the difference of thermal expansion coefficient between Sn layer and substrate and (3) the mechanical residual stress from trim-form operation after tin plating. In our study, we used the electrochemical electrolysis method and Cross-section Polisher (CP) to examine the tin whisker growth mechanism. In the result, we can clearly show the Cu6Sn5 phase grow up in the tin grain boundary regions and demonstrate that the Cu6Sn5 phase formation is the main cause of the tin whisker growth. We also discuss the relationship of tin whisker growth and tin-plating process parameters that include the temperature effect; Ni underlay effect and tin-plating bath effect. For the temperature effect, the Cu6Sn5 is the major phase at 150¢XC aging. The mechanism behind its growth mechanism was grain boundary diffusion at the earlier stage and then the bulk diffusion in the later stage. The application of 150¢XC post-heat treatment could drive the bulk diffusion and form a layer type Cu6Sn5 phase to eliminate the whisker growth. For the Ni underlay effect, the Ni underlay can block the Cu atom diffusion to the tin layer and changed the tin layer stress state from compressive to tensile. Therefore, the tin whisker can be eliminated. For the tin-plating bath effect, in the sulfuric acid base and uses Triton X-100 as the surface active agent, may transform the whisker type to particular tin grain type. Thus, this tin-plating solution can restrain the tin whisker growth.
324

Powder Metallurgy Of W-ni-cu Alloys

Caliskan, Necmettin Kaan 01 September 2006 (has links) (PDF)
In the present study / the effects of the powder metallurgical parameters such as the mixing method, compaction pressure, initial tungsten (W) particle size, composition, sintering temperature and sintering time on the sintering behavior of selected high density W-Ni-Cu alloys were investigated. The alloys were produced through conventional powder metallurgy route of mixing, cold compaction and sintering. The total solute (Ni-Cu) content in the produced alloys was kept constant at 10 wt%, while the copper concentration of the solutes was varied from 2.5 wt% to 10 wt%. Mainly liquid phase sintering method was applied in the production of the alloys. The results of the study were based on the density measurements, microstructural characterizations including optical and scanning electron microscopy and mechanical characterizations including hardness measurements. The results showed that the nature of the mixing method applied in the preparation of the powder mixtures has a considerable effect on the final sintered state of W-Ni-Cu alloys. Within the experimental limits of the study, the compaction v pressure and initial W particle size did not seem to affect the densification behavior. It was found that the sintering behavior of W-Ni-Cu alloys investigated in this study was essentially dominated by the Ni content in the alloy and the sintering temperature. A high degree of densification was observed in these alloys with an increase in the Ni content and sintering temperature which was suggested to be due to an increase in the solubility and diffusivity of W in the binder matrix phase with an increase in these parameters, leading to an increase in the overall sintering kinetics. Based on the results obtained in the present study, a model explaining the kinetics of the diffusional processes governing the densification and coarsening behavior of W-Ni-Cu alloys was proposed.
325

Steam Reforming Of Ethanol For Hydrogen Production Using Cu-mcm41 And Ni-mcm41 Type Mesoporous Catalytic Materials

Ozdogan, Ekin 01 September 2007 (has links) (PDF)
The world&rsquo / s being alerted to the global warming danger and the depletion of fossil fuel resources, has increased the importance of the clean and renewable hydrogen energy. Bioethanol has high potential to be used as a resource of hydrogen since it is a non-petroleum feedstock and it is able to produce hydrogen rich mixture by steam reforming reactions. Discovery of mesoporous MCM-41 type high surface area silicate-structured materials with narrow pore size distributions (20-100 &Aring / ) and high surface areas (up to 1500 m2/g) opened a new avenue in catalysis research. Catalytic activity of such mesoporous materials are enhanced by the incorporation of active metals or metal oxides into their structure. Nickel and copper are among the most active metals to be used in steam reforming of ethanol to produce hydrogen. In this study, copper and nickel incorporated MCM-41 type catalytic materials were tested in the steam reforming of ethanol. Two Ni-MCM-41 samples having different Ni/Si ratios were prepared by high temperature direct synthesis method and two Cu-MCM-41 samples having same Cu/Si ratios were synthesized by two different methods namely, high temperature direct synthesis method and impregnation method. The synthesized materials characterized by XRD, EDS, SEM, N2 physisorption and TPR techniques. XRD results showed that Ni-MCM-41 and Cu-MCM-41 catalysts had typical MCM-41 structure. The d100 and lattice parameter values of Ni-HT (I) (Ni-MCM-41 sample having 0.036 Ni/Si atomic ratio) was obtained as 3.96 and 4.57 nm., respectively. In addition Ni-HT (I) was found to have a surface area of 860.5 m2/g and 2.7 nm pore diameter. The d100 and lattice parameter values for a typical Cu-MCM-41 prepared by impregnation method having Cu/Si atomic ratio of 0.19 were obtained as 3.6 and 4.2 nm., respectively. This sample also has a 631 m2/g surface area and 2.5 nm pore diameter. Steam reforming of ethanol was investigated in the vapor phase by using Ni-MCM-41 and Cu-MCM-41 catalysts between 300&deg / C and 550&deg / C. Results proved that Ni incorporated MCM-41 type catalytic materials were highly active in hydrogen production by steam reforming of ethanol and actualized almost complete ethanol conversion for Ni-MCM-41 having Ni/Si atomic ratio of 0.15 over 500&deg / C . The side products obtained during reforming are methane and formaldehyde. Although the Cu-MCM-41 samples were not as active as Ni-MCM-41, it was observed that Cu-MCM-41 catalyst synthesized by the impregnation method showed an ethanol conversion of 0.83. However, the main product was ethylene with the copper incorporated catalysts. Effects of space time, the operating conditions (reaction temperature), metal/Si ratio of the catalyst and the preparation method on the product distributions were also investigated and best reaction conditions were searched.
326

none

Chen, Yen-Liang 12 July 2000 (has links)
none
327

Effect of redox potential, sulfide ions and a persulfide forming cysteine residue on carbon monoxide dehydrogenase

Feng, Jian 29 August 2005 (has links)
The Ni-Fe-S C-cluster of carbon monoxide dehydrogenases (CODH), which catalyzes the reversible oxidation of CO to CO2, can be stabilized in four redox states: Cox, Cred1, Cint, and Cred2. The best-supported mechanism of catalysis involves a one-electron reductive activation of Cox to Cred1 and a catalytic cycle in which Cred1 binds and oxidizes CO, forming Cred2 and releasing CO2. Recently reported experiments appear to have disqualified this mechanism, as activation was concluded to require reduction to a C-cluster state more reduced than Cred1. The results presented in this dissertation suggest that the activation potential was milder than that required to reduce these clusters. The results support a mechanism in which Cred1 is the form of the cluster that reacts with CO. The structure of the active-site C-cluster in CO dehydrogenase from Carboxydothermus hydrogenoformans (CODHCh) includes a ??2-sulfide ion bridged to the Ni and unique Fe, while the same cluster in enzymes from Rhodospirillum rubrum (CODHRr) and Moorella thermoacetica (CODHMt) lack this ion. This difference was investigated by exploring effects of sulfide on activity and spectral properties. Sulfide partially inhibited CO oxidation activities of CODHRr and CODHMt. Adding sulfide to CODHMt in the Cred1 state caused the gav = 1.82 Electron Paramagnetic Resonance spectroscopy (EPR) signal to decline and new features to appear. Sulfide did not affect the gav = 1.86 signal from the Cred2 state. A model was developed in which sulfide binds reversibly to Cred1, inhibiting catalysis. The results also suggest that the substrate hydroxyl group bridges the Ni and unique Fe. A cysteine residue recently found to form a persulfide bond with the C-cluster was characterized. The Ser mutant of the persulfide-forming Cys316 was inactive and displayed no C-cluster EPR signals. Electronic absorption and metal analysis suggest that the C-cluster is absent in this mutant. The persulfide bond appears to be essential for either the assembly or stability of the C-cluster, and/or for eliciting the redox chemistry of the C-cluster required for catalytic activity.
328

Hierarchical multiscale modeling of Ni-base superalloys

Song, Jin E. 08 July 2010 (has links)
Ni-base superalloys are widely used in hot sections of gas turbine engines due to the high resistance to fatigue and creep at elevated temperatures. Due to the demands for improved performance and efficiency in applications of the superalloys, new and improved higher temperature alloy systems are being developed. Constitutive relations for these materials need to be formulated accordingly to predict behavior of cracks at notches in components under cyclic loading with peak dwell periods representative of gas turbine engine disk materials. Since properties are affected by microstructure at various length scales ranging from 10 nm tertiary γ' precipitates to 5-30 μm grains, hierarchical multiscale modeling is essential to address behavior at the component level. The goal of this work is to develop a framework for hierarchical multiscale modeling network that features linkage of several fine scale models to incorporate relevant microstructure attributes into the framework to improve the predictability of the constitutive model. This hierarchy of models is being developed in a collaborative research program with the Ohio State University. The fine scale models include the phase field model which addresses dislocation dissociation in the γ matrix and γ' precipitate phases, and the critical stresses from the model are used as inputs to a grain scale crystal plasticity model in a bottom-up fashion. The crystal plasticity model incorporates microstructure attributes by homogenization. A major task of the present work is to link the crystal plasticity model, informed by the phase field model, to the macroscale model and calibrate models in a top-down fashion to experimental data for a range of microstructures of the improved alloy system by implementing a hierarchical optimization scheme with a parameter clustering strategy. Another key part of the strategy to be developed in this thesis is the incorporation of polycrystal plasticity simulations to model a large range of virtual microstructures that have not been experimentally realized (processed), which append the experimentally available microstructures. Simulations of cyclic responses with dwell periods for this range of virtual (and limited experimental) polycrystalline microstructures will be used to (i) provide additional data to optimize parameter fitting for a microstructure-insensitive macroscopic internal state variable (ISV) model with thermal recovery and rate dependence relevant to the temperatures of interest, and (ii) provide input to train an artificial neural network that will associate the macroscopic ISV model parameters with microstructure attributes for this material. Such microstructure sensitive macroscopic models can then be employed in component level finite element studies to model cyclic behavior with dwell times at smooth and cracked notched specimens.
329

Processdatorsystem för tryckreglering / Computer processing system for pressureregulation

Lagerström, Robert January 2002 (has links)
<p>The task of this project was to build an computer processing system for pressureregulation, in which the pressure loss over the open hydrolicvalve should be kept as low as possible. By using an cross connected proportional directional valve the valve problem could be solved. The control- and regulationproblem for the pressureregulation system was solved by using the DAQ- card NI6035E from National Instruments and the computerprogram Automatic Pressure Control 1.0 which has been software developed and written in Visual Basic. The final result showed that correct processvarible was obtained in 0,5 seconds, when the setpoint was changed in the testarea 0 - 2,5 MPa.</p> / <p>Uppgiften för examensarbetet har varit att bygga ett processdatorsystem för tryckreglering, där tryckfallet över öppen hydraulventil skall hållas så lågt som möjligt. Med hjälp av en korskopplad proportionalriktningsventil kunde uppgiftens ventilproblem lösas. Styr- och reglerproblemet för tryckreglersystemet löstes med mätkortet NI-6035E från National Instruments och datorprogram- met Automatic Pressure Control 1.0 som mjukvaruutvecklades och skrevs i Visual Basic. Det slut- giltiga resultatet gav att korrekta ärvärden erhölls efter 0,5 sekunder, när börvärdet förändrades inom testområdet 0 - 2,5 MPa.</p>
330

Reconstructions et réactivité catalytique induites par contrainte : une étude quantique des dépôts de Pd sur Ni(110).

Filhol, Jean-Sébastien 20 July 2001 (has links) (PDF)
Dans cette thèse, nous tenterons d'apporter une dénition plus précise de la contrainte de surface au niveau atomique et nous l'appliquerons au cas d'une monocouche épitaxique de Pd/Ni(110) (la surface (110) est présentée dans la gure 1.1.<br />Nous montrerons que cette contrainte peut induire des reconstructions importantes de surface. A partir de là nous construirons le diagramme de rons qu'un certain nombre de paramètres entre en compétition et induit ce diagramme. Nous verrons que l'épitaxie sur substrat Ni peut maintenir la surface de Pd dans une phase normalement instable pour les hauts taux de recouvrement. Nous verrons qu'un simple jeu sur les paramètres d'épitaxie du système suffit à induire un transition de phase. Nous montrerons que ces surfaces possèdent des propriétés électroniques qui peuvent varier fortement laissant penser qu'elles possèdent toute une gamme de réactivité.<br />Nous étudierons les mécanismes d'adsorption d'une molécule test, l'éthylène, sur la surface de référence du Pd(110). Nous montrerons que même la simple détermination des sites d'adsorption de l'éthylène sur celle-ci peut réserver quelques surprises. Ensuite nous porterons notre attention sur la réaction d'hydrogénation de l'éthylène sur cette surface et nous en déduirons quelques chemins réactionnels.<br />Le coeur de l'étude vient à la n de cette thèse. Il s'agit de représenter la réaction de l'éthylène sur les dépôts épais (4 monocouches) de Pd/Ni(110). Nous déterminerons une surface modèle qui représente de manière satisfaisante les surfaces réelles. Nous trouverons ensuite les états d'adsorption de l'éthylène, puis ceux de co-adsorption avec de l'hydrogène (dans la limite des faibles taux de couverture). Et, nous trouverons les chemins d'hydrogénation de l'éthylène. Enn, nous comparerons ces chemins à ceux obtenus pour les surfaces Pd(110) et nous tenterons de comprendre ce qui permet l'amélioration de la cinétique d'hydrogénation sur ces surfaces.phases partiel des surfaces Pd/Ni(110).

Page generated in 0.0388 seconds