51 |
Characterization of SBIP68: A Putative Tobacco Glucosyltransferase Protein and Its Role in Plant Defense MechanismsOdesina, Abdulkareem O 01 December 2015 (has links)
Plant secondary metabolites are essential for normal growth and development in plants ultimately affecting crop yield. They play roles ranging from appearance of the plants to defending against pathogen attack and herbivory. They have been used by humans for medicinal and recreational purposes amongst others. Glycosyltransferases catalyze the transfer of sugars from donor substrates to acceptors. Glucosyltransferases are a specific type of glycosyltransferases known to transfer glucose molecules from a glucose donor to a glucose acceptor (aglycone) producing the corresponding glucose secondary metabolite or glycone, in this case glucosides. It was hypothesized that SBIP68, a tobacco putative glucosyltransferase-like protein glucosylated salicylic acid. Salicylic acid is an essential plant defense secondary metabolite. SBIP68 was cloned and heterologously expressed in both prokaryotic and eukaryotic systems. Results from activity screening suggest that SBIP68 is a UDP-glucose flavonoid glucosyltransferase with broad substrate specificity. Further studies are required to fully characterize SBIP68.
|
52 |
El potencial acumulador de cadmio y plomo de la Nicotiana tabacum L variedad "Criollo 98" cultivada en suelos y sustrato artificial en San Juan y Martínez, Pinar del Río, CubaPérez Meléndez, José Manuel 15 March 2007 (has links)
Programa de Doctorado: Desarrollo sostenible: manejos forestal y turístico.
|
53 |
Functional Characterization of PtaRHE1, a gene that encodes a RING-H2 type protein in poplar/Caractérisation fonctionnelle de PtaRHE1, un gène qui code pour une protéine de type RING-H2 chez le peuplier.Mukoko Bopopi, Johnny 14 January 2011 (has links)
SUMMARY
PtaRHE1 is a poplar (Populus tremula x P. alba) gene encoding a REALLY INTERESTING NEW GENE (RING) domain-containing protein. RING proteins are largely represented in plants and play important roles in the regulation of many developmental processes as well as in plant-environment interactions. In this thesis, we present a functional characterization of PtaRHE1. To gain further insight into the role of this gene, molecular and genetic alteration approaches were used. The results of in vitro ubiquitination assays indicate that PtaRHE1 protein is a functional E3 ligase and this activity was shown to be specific with the human UbCH5a, among the tested ubiquitin-conjugating enzymes. Histochemical GUS stainings showed that the PtaRHE1 promoter is induced by plant pathogens and by elicitors such as salicylic acid and cellulase and is also developmentally regulated. In silico predictions and the transient expression of PtaRHE1-GFP fusion protein in N. tabacum epidermal cells revealed that PtaRHE1 is localized both in the plasma membrane and in the nucleus. The localization of expression of PtaRHE1 in poplar stem by in situ hybridization indicated that PtaRHE1 transcripts are localized within the cambial zone mainly in ray cells, suggesting a role of this gene in vascular tissue development and/or functioning. The overexpression of PtaRHE1 in tobacco resulted in a pleiotropic phenotype characterized by a curling of leaves, the formation of necrotic lesions on leaf blades, growth retardation as well as a delay in flower transition. Plant genes expression responses to PtaRHE1 overexpression provided evidence for the up-regulation of defence and/or programmed cell death (PCD) related genes. Moreover, genes coding for WRKY transcription factors as well as for MAPK, such as WIPK, were also found to be induced in the transgenic lines as compared to the wild type (WT). Taken together, our results suggest that the E3 ligase PtaRHE1 plays a role in the signal transduction pathways leading to defence responses against biotic and abiotic stresses. Identification of PtaRHE1 target(s) is required in order to fully assess the role of this E3 ligase in the ubiquitination-mediated regulation of defence response./
RÉSUMÉ
PtaRHE1 est un gène qui code pour une protéine possédant un domaine RING (REALLY INTERESTING NEW GENE) chez le peuplier (Populus tremula x P. alba). Les protéines de type RING sont très répandues chez les végétaux où elles jouent de rôles importants dans la régulation de plusieurs processus de développement et également dans les interactions plantes-environnement. Dans le cadre de ce travail, nous avons procédé à la caractérisation fonctionnelle du gène PtaRHE1. Dans le but de découvrir la fonction de ce gène, nous avons adopté une stratégie faisant usage d’approches moléculaires ainsi que de l’altération de l’expression génique. Les résultats obtenus montrent que la protéine PtaRHE1 est une E3 ligase et que cette activité enzymatique est spécifique à l’Ubiquitin-Conjugating enzym humaine UbCH5a. Les résultats du test histochimique GUS ont montré que le promoteur du gène PtaRHE1 est induit par des pathogènes et aussi par l’acide salicylique et la cellulase. Par ailleurs, ce promoteur est aussi régulé au cours du développement végétal. Les prédictions in silico et l’expression transitoire d’une fusion traductionnelle GFP-PtaRHE1, au niveau de l’épiderme des feuilles du tabac N. tabacum, ont révélé que la protéine PtaRHE1 se situe tant au niveau de la membrane cytoplasmique qu’au niveau du noyau. La localisation de l’expression du gène PtaRHE1, par les techniques d’hybridation in situ, montre que les transcrits de ce gène se retrouvent principalement au niveau des cellules de rayon, dans la zone cambiale, suggérant que ce gène pourrait jouer un rôle dans le développement ou la formation du tissu vasculaire. La surexpression du gène PtaRHE1 chez le tabac a conduit à l’obtention d’un phénotype pléiotropique caractérisé par un recroquevillement (incurvation) des feuilles, la formation des lésions nécrotiques sur le limbe, un retard de croissance ainsi qu’un retard dans la transition florale. L’analyse de la réponse de l’expression de différents gènes à la surexpression de PtaRHE1 a mis en évidence l’induction des gènes liés à la défense et ou à la mort cellulaire programmée. En outre, l’expression des gènes codant pour des facteurs de transcription WRKY et aussi des MAPKs, tel que WIPK, était aussi plus élevée chez les plantes transgéniques comparées au type sauvage. Les résultats de ce travail suggèrent que PtaRHE1, comme E3 ligase, pourrait jouer un rôle dans la transduction des signaux cellulaires conduisant aux réactions de défense contre les stress biotiques et abiotiques. L’identification de la (des) cible(s) de PtaRHE1 est indispensable pour la compréhension du rôle de cette protéine dans la régulation des réponses de défense par l’intermédiaire de l’ubiquitination.
|
54 |
Investigating the Role of Alternative Oxidase in Nicotiana tabacum during Light AcclimationCheung, Melissa 23 August 2011 (has links)
Photosynthetic electron transport produces ATP and NADPH which support carbon fixation by the Calvin Cycle. To avoid over-reduction of the electron transport chain, plants must balance absorption and consumption of light energy. Mitochondrial alternative oxidase (AOX) is a non-energy-conserving electron sink, making it an ideal candidate to oxidize excess reductant and regulate chloroplastic redox state. Wild-type (WT) and transgenic Nicotiana tabacum lines with enhanced or suppressed AOX protein levels were grown under low light (LL) and moderate light (ML). LL-grown plants were also shifted to ML. AOX transcript and protein levels were enhanced in WT plants under ML. Chlorophyll fluorescence, gas exchange, and contents of chlorophyll, carbohydrate, and malondialdehyde were measured. Lack of AOX protein decreased Photosystem II (PSII) quantum efficiency and CO2 assimilation rates while enhancing PSII excitation pressure compared to WT. These findings suggest a role for AOX in mediating the chloroplast-mitochondrion relationship during acclimation to higher irradiance.
|
55 |
Investigating the Role of Alternative Oxidase in Nicotiana tabacum during Light AcclimationCheung, Melissa 23 August 2011 (has links)
Photosynthetic electron transport produces ATP and NADPH which support carbon fixation by the Calvin Cycle. To avoid over-reduction of the electron transport chain, plants must balance absorption and consumption of light energy. Mitochondrial alternative oxidase (AOX) is a non-energy-conserving electron sink, making it an ideal candidate to oxidize excess reductant and regulate chloroplastic redox state. Wild-type (WT) and transgenic Nicotiana tabacum lines with enhanced or suppressed AOX protein levels were grown under low light (LL) and moderate light (ML). LL-grown plants were also shifted to ML. AOX transcript and protein levels were enhanced in WT plants under ML. Chlorophyll fluorescence, gas exchange, and contents of chlorophyll, carbohydrate, and malondialdehyde were measured. Lack of AOX protein decreased Photosystem II (PSII) quantum efficiency and CO2 assimilation rates while enhancing PSII excitation pressure compared to WT. These findings suggest a role for AOX in mediating the chloroplast-mitochondrion relationship during acclimation to higher irradiance.
|
56 |
Transformation Of Nicotiana Tabacum Plants With Na+/h+ Antiporter (atnhx1) Gene Isolated From Arabidopsis Thaliana For Evaluation Of Salt ToleranceAysin, Ferhunde 01 September 2006 (has links) (PDF)
Large, membrane-bound vacuoles of plant cells are suitable organelles for the compartmentation of ions. These vacuoles contain Na+/H+ antiporters for movement of Na+ within the organelle in exchange for H+. They provide an efficient mechanism to prevent the occurance of detrimental outcomes of Na+ accumulation in the cytosol. Identification of AtNHX1 gene that confers resistance to salinity by expressing a Na+/H+ antiport pump facilitates the understanding of the salt stress tolerance mechanisms of plants.
The aim of the present study was to isolate and clone the Arabidopsis thaliana AtNHX1 coding sequence for transformation of Nicotiana tabacum plants via Agrobacterium tumefaciens mediated gene transfer. For this purpose, total RNA was isolated from Arabidopsis thaliana plants and cDNA synthesis was performed. AtNHX1 (1614bp) was amplified by using cDNA of Arabidopsis via specific primers. The amplified PCR product was verified by sequencing. AtNHX1 coding sequence was cloned into the plant transformation vector pCVB1 and 10 independent putative transgenic tobacco plants were obtained via Agrobacterium tumefaciens mediated gene transfer sysytem. Transfer of selected 8 putative transgenic plants to soil provided the regeneration of T1 seeds. Germination of the seeds under different salt treatments (0, 50, 100, 150, 200, 250 mM NaCl) was observed for evaluating the salt tolerance of transformed plants. The 82% and 60% of the transgenic T1 seeds were germinated on 150 mM NaCl and 200 mM NaCl containing media, respectively. In contrast the germination percentage of wild type tobacco seeds under 150 mM NaCl and 200 mM NaCl concentrations were 39% and 21%, respectively. The germination rate of the transgenic T1 seeds were significantly higher (p=0,001) when compared to the control seeds especially under high salt stress conditions (150 and 200 mM NaCl). Taken all together, our results demonstrated that the germination efficiencies and growth of the plants transformed with AtNHX1 were higher than the wild type tobacco plants under high salt concentrations.
|
57 |
The effect of elevated glutathione reductase and superoxide dismutase activities in stressed transgenic tobacco.Penter, Mark Gavin. January 1996 (has links)
Life as we know it would be impossible in the absence of oxygen. However,
too much oxygen can be toxic to the aerobic organisms which depend on it
for their very existence. This apparent paradox arises as a result of oxygen's
ability to accept electrons, forming highly reactive (reduced) oxygen species
such as superoxide, hydrogen peroxide and the hydroxyl radical. The toxicity
of oxygen is greatly enhanced in illuminated plants, due to the photosynthetic
reactions which produce both oxygen and highly energetic electrons in close
proximity to one another. These problems are further exacerbated when
plants are exposed to a variety of stress conditions, since these conditions
reduce the ability of plants to utilise excess electrons. As a result of the
danger posed by· these reactive oxygen species, plants have· evolved a
complex antioxidant system for their scavenging.
Research has shown that plants with naturally elevated levels of the
components of the antioxidant system are better equipped to deal with stress
conditions which enhance the production of reactive oxygen species. A
considerable amount of research has thus been dedicated to the elucidation
of the antioxidant system. Almost as much research has been dedicated to
enhancing the antioxidant system, with the aim of improving plant productivity
under stress conditions.
This study sought to evaluate plants carrying elevated levels of two of the
enzymes of the antioxidant system. For these purposes, tobacco was
transformed with the gene for E. coli glutathione reductase (GR), an enzyme
believed to catalyse the rate limiting reaction in the scavenging of hydrogen
peroxide. This gene was fused to the gene for the RUBISCO small subunit
transit peptide - a peptide capable of targeting proteins to the chloroplast.
Due to the presence of this peptide the transformed plants exhibited high
chloroplastic levels of GR activity. These plants were crossed with a second
tobacco transformant carrying high levels of chloroplastic tomato superoxide
dismutase (SOD) - an enzyme responsible for the scavenging of superoxide.
These hybrid plants were shown to exhibit high GR and SOD activities in the
chloroplast .- the subcellular compartment most susceptible to damage
caused by reactive oxygen species.
The transgenic hybrids were evaluated for their ability to tolerate oxidative
stress by treating them with paraquat - a herbicide whose mode of action
involves the production of large quantities of activated oxygen. Under stress
conditions, plants carrying just E. coli GR showed a slight improvement in
their ability to deal with oxidative stress. In contrast to this, the SOD
transformants showed more cellular damage than untransformed control
plants. This was attributed to the inability of other enzymes in the antioxidant
pathway to deal with the increased flow of metabolites through the pathway.
The hybrid transformants showed enhanced stress tolerance in the initial
stages of oxidative stress, but this declined with ongoing exposure to stress
conditions. As with the SOD transformants, this decline in protection was
. ascribed to the relatively low activities of the other enzymes in the antioxidant pathway. It was concluded that elevated levels of the two enzymes conferred
greater stress tolerance than just one of the enzymes, but for true stress
tolerance it will be necessary to evaluate the antioxidant system and enhance
the activity of further enzymes in the pathway. It may also be necessary to
improve the regulation of transgene expression, ensuring that none of the
enzymes are overwhelmed by the increased flow of metabolites through the
system. / Thesis (M.Sc.)-University of Natal, 1996
|
58 |
Effects of nitrogen nutrition on salt stressed Nicotiana tabacum var. Samsum in vitro.Sweby, Deborah Lee. January 1992 (has links)
The responses of Nicotiana tabacum L. var. Samsun to alterations in the nitrogen
(N) supply under saline conditions in vitro were monitored. The aim was to test the
hypothesis that nitrate-nitrogen supplementation to salt stressed plants alleviates the
deleterious effects of salt on plant growth.
Due to its capacity to be maintained under stringent environmental conditions, in
vitro shoot cultures were chosen as the system of study. Nicotiana tabacum plantlets
regenerated from callus in vitro were excised and rooted on solid MS culture
medium containing a range of concentrations of NaCI (0 - 180 mM) and N (0 - 120
mM, as NO3--N, NH4+-N or a combination). A variety of parameters of root and
shoot growth, nutrient utilisation and nitrogen metabolism were assessed over a 35 d
period. Plant growth on 40 mM NO3--N + 20 mM NH4+-N (standard MS nutrients) was
inhibited by the presence of salt, with root growth being more adversely affected by
salt than stem growth. Root emergence was delayed from 6 d (0 mM NaCI) to 15 d
(180 mM NaCI). Similar suppression of growth for all parameters, except root mass
and leaf chlorophyll content, was observed when NaCI was replaced with mannitol
at equivalent osmolalities. Root mass and leaf chlorophyll were significantly
improved in plantlets supplied with mannitol. The time of root emergence was
unaffected by mannitol supply, with all roots emerging after 10 d in culture. Plantlet
growth on NH4+-N only (0 - 60 mM) was severely inhibited, even in the absence of
NaCI, and was inferior to growth on NO3--N. Nitrate additions to salt stressed
plantlets could not match growth in control (0 mM NaCI) plantlets. When plantlets
were cultured on NO3--N only (0 mM, 30 mM, 60 mM, 120 mM), the increase in
nitrate supply up to 60 mM resulted in a small improvement in growth on 90 mM
NaCI, but had almost no effect on growth at 180 mM NaCl. A nitrate supply of 120
mM led to growth inhibition in all parameters, even in the absence of NaCl.
Plantlet growth on isosmotic concentrations of mannitol in the presence of 0 - 120
mM NO3--N essentially mimicked that of NaCI, except for leaf chlorophyll content
which was improved on mannitol at all NO3-·N levels.
Nitrate uptake (measured as depletion from growth medium) by plantlets grown on
0 - 180 mM NaCI was positively correlated to availability of nitrate but negatively
correlated to NaCI supply. Similar results were obtained for a mannitol supply
except nitrate uptake was enhanced significantly on mannitol compared to NaCl.
Sodium and chloride uptake appeared unaffected by nitrate concentration. Leaf
protein content responded favourably to an increase in the NO3--N supply up to 60
mM and, in particular, appeared to be stimulated in the presence of 180 mM NaCl.
Nitrate reductase (NR) activity was found to be inhibited drastically by salt and
NO3--N supplementation to the salt medium had no effect on enzyme activity.
A reduction in leaf total RNA content was recorded with an increase in NaCI
concentration from 0 - 180 mM. A positive response to an increase in the NO3--N
supply from 30 mM to 60 mM was detected in the presence of NaCl. Attempts were
made to assess the levels of mRNA for NR in response to the various NaCl and N
regimes. The plasmid pBMCI02010 containing a NR cDNA insert was isolated and
purified and used in both radioactive and non-radioactive RNA slot blot
hybridisation procedures. However, due to problems of non-specific binding of the
probe, no quantification of the levels of NR mRNA in response to the various
treatments could be made. Nitrate supplementation to plantlets of Nicotiana tabacum growing in vitro did not
appear to ameliorate the effects of salinity stress, such that growth of plantlets in the
presence of NaCI was always inferior to that in the absence of NaCl. As a large
portion of growth inhibition was found in this study to be a result of osmotic rather
than ionic effects of salt, it is questioned whether a nitrate supply would have an
ameliorating effect on plant growth under field conditions. / Thesis (M.Sc.)-University of Natal, Durban, 1992.
|
59 |
Evaluation Of Salt Tolerance In Sto Transformed Arabidopsis Thaliana And Nicotiana Tabacum PlantsSelcuk, Feyza 01 January 2004 (has links) (PDF)
Salinity is one of the limiting factors of crop development. Together with causing water loss from plant tissues, salinity also leads to ion toxicity. Under salt stress, increase in Ca+2 concentration in cytosol can decrease the deleterious effects of stress. The binding of Ca+2 to calmodulin initiates a signaling cascade involving the activation of certain transcription factors like STO and STZ. This signal transduction pathway regulates transport of proteins that control net Na+ influx across the plasma membrane and compartmentalization into the vacuole.
Previously Arabidopsis STO was identified as a repressor of the yeast calcineurin mutation. Genetical and molecular characterization of STO / a putative transcription factor that takes role in salt stress tolerance can provide a better understanding in the mechanism of salt tolerance and development of resistance in higher plants.
The aim of the present study was to amplify and clone the Arabidopsis thaliana sto gene in plant transformation vectors and use them for the transformation of Nicotiana tabacum and Arabidopsis thaliana plants via Agrobacterium tumefaciens mediated gene transfer systems. T0 and T1 progeny of transgenic plants carrying sto were analysed for the stable integration of transgenes, segregetion patterns, expression of the gene and their tolerance to salt stress. The results of the study showed that all transgenic Nicotiana tabacum lines are differentially expressing a transcript that is lacking in control plants and most transgenic lines exhibited higher germination percentages and fresh weights, lower MDA contents under salt stress. On the other hand overexpression of sto in Arabidopsis plants did not provide an advantage to transgenic plants under salt stress, however the anti-sense expression of sto caused decreased germination percentages even under normal conditions.
According to the sto expression analysis of wild type Arabidopsis plants, sto was shown to be induced under certain stress conditions like cold and sucrose, whereas it remained constant in salt treatment. External application of plant growth regulators had no clear effect on sto expression, with the exception of slight induction of expression with ABA and ethylene treatments.
|
60 |
Extension Of Flower Longevity In Transgenic Plants Via Antisense Blockage Of Ethylene BiosynthesisDecani Yol, Betul 01 July 2004 (has links) (PDF)
Ethylene (C2H4) is a very simple molecule, a gas, and has numerous effects on the growth, development and storage life of many fruits, vegetables and ornamental crops. In higher plants, ethylene is produced from L-methionine in essentially all tissues and ACC Synthase and ACC Oxidase are the two key enzymes in the biosynthesis of ethylene.
The objective of the present study was to transform tobacco (Nicotiana tabacum L. cv. Samsun) plant with partial sequence of torenia acc oxidase gene in antisense and sense orientations via Agrobacterium-mediated gene transfer system, and to analyze its effect on ethylene production in transgenic plants.
Six antisense and seven sense T0 putative transgenic lines were obtained and were further analyzed with several assays. Leaf disc assay and chlorophenol red assay under selection (75 mg/L kanamycin) revealed positive results compared to the non-transformed plant. T1 generations were obtained from all putative transgenic lines. PCR analysis and Northern Blot Hybridization results confirmed the transgenic nature of T1 progeny. Furthermore, ethylene amount produced by flowers were measured with gas chromatography, which resulted in an average of 77% reduction in S7 line and 72% reduction in A1 line compared with the control flowers. These results indicated that, transgenic tobacco plants carrying torenia acc oxidase transgene both in antisense and sense orientations showed reduced ethylene production thus a possibility of flower life extension.
|
Page generated in 0.0265 seconds