1 |
Analyzing the Opportunities for NIPAAm Dehumidification in Air Conditioning SystemsJanuary 2019 (has links)
abstract: When air is supplied to a conditioned space, the temperature and humidity of the air often contribute to the comfort and health of the occupants within the space. However, the vapor compression system, which is the standard air conditioning configuration, requires air to reach the dew point for dehumidification to occur, which can decrease system efficiency and longevity in low temperature applications.
To improve performance, some systems dehumidify the air before cooling. One common dehumidifier is the desiccant wheel, in which solid desiccant absorbs moisture out of the air while rotating through circular housing. This system improves performance, especially when the desiccant is regenerated with waste or solar heat; however, the heat of regeneration is very large, as the water absorbed during dehumidification must be evaporated. N-isopropylacrylamide (NIPAAm), a sorbent that oozes water when raised above a certain temperature, could potentially replace traditional desiccants in dehumidifiers. The heat of regeneration for NIPAAm consists of some sensible heat to bring the sorbent to the regeneration temperature, plus some latent heat to offset any liquid water that is evaporated as it is exuded from the NIPAAm. This means the NIPAAm regeneration heat has the potential to be much lower than that of a traditional desiccant.
Models were created for a standard vapor compression air conditioning system, two desiccant systems, and two theoretical NIPAAm systems. All components were modeled for simplified steady state operation. For a moderate percent of water evaporated during regeneration, it was found that the NIPAAm systems perform better than standard vapor compression. When compared to the desiccant systems, the NIPAAm systems performed better at almost all percent evaporation values. The regeneration heat was modeled as if supplied by an electric heater. If a cheaper heat source were utilized, the case for NIPAAm would be even stronger.
Future work on NIPAAm dehumidification should focus on lowering the percent evaporation from the 67% value found in literature. Additionally, the NIPAAm cannot exceed the lower critical solution temperature during dehumidification, indicating that a NIPAAm dehumidification system should be carefully designed such that the sorbent temperature is kept sufficiently low during dehumidification. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2019
|
2 |
Thermo-responsive Copolymers with Enzyme-dependent Lower Critical Solution Temperatures for Endovascular EmbolizationJanuary 2019 (has links)
abstract: Minimally invasive endovascular embolization procedures decrease surgery time, speed up recovery, and provide the possibility for more comprehensive treatment of aneurysms, arteriovenous malformations (AVMs), and hypervascular tumors. Liquid embolic agents (LEAs) are preferred over mechanical embolic agents, such as coils, because they achieve homogeneous filling of aneurysms and more complex angioarchitectures. The gold standard of commercially available LEAs is dissolved in dimethyl sulfoxide (DMSO), which has been associated with vasospasm and angiotoxicity. The aim of this study was to investigate amino acid substitution in an enzyme-degradable side group of an N-isopropylacrylamide (NIPAAm) copolymer for the development of a LEA that would be delivered in water and degrade at the rate that tissue is regenerated. NIPAAm copolymers have a lower critical solution temperature (LCST) due to their amphiphilic nature. This property enables them to be delivered as liquids through a microcatheter below their LCST and to solidify in situ above the LCST, which would result in the successful selective occlusion of blood vessels. Therefore, in this work, a series of poly(NIPAAm-co-peptide) copolymers with hydrophobic side groups containing the Ala-Pro-Gly-Leu collagenase substrate peptide sequence were synthesized as in situ forming, injectable copolymers.. The Gly-Leu peptide bond in these polypeptides is cleaved by collagenase, converting the side group into the more hydrophilic Gly-Ala-Pro-Gly-COOH (GAPG-COOH), thus increasing the LCST of the hydrogel after enzyme degradation. Enzyme degradation property and moderate mechanical stability convinces the use of these copolymers as liquid embolic agents. / Dissertation/Thesis / Masters Thesis Biomedical Engineering 2019
|
3 |
DEVELOPMENT OF NOVEL TEMPERATURE RESPONSIVE POLYMERIC SORBENTS AND THEIR APPLICATIONS IN WATER REMEDIATIONTang, Shuo 01 January 2019 (has links)
Water remediation utilizing sorption has found strong interest due to its inexpensiveness, universal nature and ease of operation. In particular, thermo-responsive sorbents consisting of N-isopropylacrylamide (NIPAAm) offer significant potential as “smart” and advanced materials to remove multiple aqueous pollutants. NIPAAm exhibits excellent thermo-responsiveness, which senses the external temperature variation and changes its swelling and sorption behaviors in a sharp and rapid manner. At the beginning of this work, an extensive review of literature has been compiled to provide a summary of NIPAAm-based thermo-responsive sorbents in water/wastewater remediation applications.
Initially, we developed a novel approach to synthesize and characterize NIPAAm copolymeric hydrogels. Four different polyphenolic crosslinkers including curcumin multiacrylate (CMA), quercetin multiacrylate (QMA), 4,4’-dihydroxybiphenyl diacrylate (44BDA) and chrysin multiacrylate (ChryMA) were successfully incorporated into crosslinked hydrogels. Their temperature responsiveness and lower critical solution temperature (LCST) were characterized using swelling studies and differential scanning calorimetry (DSC). Increasing the crosslinker content resulted in a significant decrease in the swelling ratio and LCST, which was due to the increased crosslinking and hydrophobicity introduced by the polyphenolic crosslinkers.
We also demonstrated the application of two sets of aforementioned crosslinked hydrogels (NIPAAm-co-CMA and NIPAAm-co-44BDA) as effective gel sorbents to capture phenol as a model contaminant. Temperature-dependent sorption was evaluated through a binding study of phenol at 10°C and 50°C. Significant enhancement in the sorption was observed at 50°C, and this can be attributed to the phase transition induced hydrophobic interactions between the copolymer gel and phenol. Moreover, the obtained hydrogels possessed facile and efficient regeneration ability in water at 10°C, without requiring harsh solvent treatment or high energy input.
Building on the sorption behavior observed with crosslinked NIPAAm hydrogels, we extended the investigation to linear copolymer systems, and these were demonstrated as a temperature responsive flocculants. Here, NIPAAm copolymers consisting of 2-phenylphenol monoacrylate (2PPMA) were successfully developed as smart flocculants to remove metal oxide nanoparticles (e.g., Fe3O4, CeO2, TiO2). The incorporation of 2PPMA enhanced the flocculation at temperatures above the LCST (e.g., 50°C), which was due to the combined hydrophobicity of 2PPMA and NIPAAm. Overall, NIPAAm-based sorbents have a variety of applications in aqueous pollutant removal and are a promising class of materials for cost-effective water remediation technology.
|
4 |
Microsphere-Aided Characterization of Stimuli-Responsive Polymer NetworksBello, Carlos A 05 November 2008 (has links)
The fabrication and characterization of surface-anchored hydrogel microstructures are described. The hydrogel structures are constructed from poly(N-isopropylacrylamide), or poly(NIPAAm), which is a well-known thermoresponsive polymer that swells and contracts with changes in temperature. When patterned on a surface, these structures can experience a variety of shape changes induced by nonuniform swelling. Depending on the aspect ratio, patterns can, for instance buckle upon swelling and form wave-like patterns. Such structural changes replicate oscillatory motion of the smooth muscle cells and can be used to transport objects in microfluidics. The work, herein, investigates methods of pattern production and introduces a new technique for characterizing local swelling in the patterns. In order to achieve the latter, fluorescent microspheres were embedded in hydrogel patterns and their positions were mapped in three-dimensions using confocal microscopy. The measurements permit, for the first time, swelling maps of the structures based on relative movements of the microspheres. This information will ultimately aid in understanding how swollen macroscopic structures are related to gradients in localized swelling.
|
5 |
Structure-property relationship of hydrogel: molecular dynamics simulation approachLee, Seung Geol 01 July 2011 (has links)
We have used a molecular modeling of both random and blocky sequence hydrogel networks of poly(N-vinyl-2-pyrrolidone-co-2-hydroxyethyl methacrylate) (P(VP-co-HEMA)) with a composition of VP:HEMA = 37:13 to investigate the effect of the monomeric sequence and the water content on the equilibrium structures and the mechanical and transport properties by full-atomistic molecular dynamics (MD) simulations. The degree of randomness of the monomer sequence for the random and the blocky copolymers, were 1.170 and 0.104, respectively, and the degree of polymerization was fixed at 50. The equilibrated density of the hydrogel was found to be larger for the random sequence than for the blocky sequence at low water contents (< 40 wt %), but this density difference decreased with increasing water content. The pair correlation function analysis shows that VP is more hydrophilic than HEMA and that the random sequence hydrogel is solvated more than the blocky sequence hydrogel at low water content, which disappears with increasing water content. Correspondingly, the water structure is more disrupted by the random sequence hydrogel at low water content but eventually develops the expected bulk-water-like structure with increasing water content. From mechanical deformation simulations, the stress-strain analysis showed that the VP is found to relax more efficiently, especially in the blocky sequence, so that the blocky sequence hydrogel shows less stress levels compared to the random sequence hydrogel. As the water content increases, the stress level becomes identical for both sequences. The elastic moduli of the hydrogels calculated from the constant strain energy minimization show the same trend with the stress-strain analysis. Ascorbic acid and D-glucose were used to study the effect of the monomeric sequence on the diffusion of small guest molecules within the hydrogels. By analyzing the pair correlation functions, it was found that the guest molecule has greater accessibility to the VP units than to the HEMA units with both monomeric sequences due to its higher hydrophilicity compared to the HEMA units. The monomeric sequence effect on the P(VP-co-HEMA) hydrogel is clearly observed with 20 wt % water content, but the monomeric sequence effect is significantly reduced with 40 wt % water content and disappears with 80 wt % water content. This is because the hydrophilic guest molecules are more likely to be associated with water molecules than with the polymer network at the high water content. By analyzing the mean square displacement, the displacement of the guest molecules and the inner surface area, it is also found that the guest molecule is confined in the system at 20 wt % water content, resulting in highly anomalous subdiffusion. Therefore, the diffusion of the guest molecules is directly affected by their interaction with the monomer units, the monomeric sequence and the geometrical confinement in the hydrogel at a low water content, but the monomeric sequence effect and the restriction on the diffusion of the guest molecule are significantly decreased with increasing the water content.
We also investigated the de-swelling mechanisms of the surface-grafted poly(N-isopropylacrylamide) (P(NIPAAm)) brushes containing 1300 water molecules at 275 K, 290 K, 320 K, 345 K, and 370 K. We clearly observed the de-swelling of the water molecules for P(NIPAAm) above the lower critical solution temperature (LCST) (~305 K). Below the LCST, we did not observe the de-swelling of water molecules. Using the upper critical solution temperature (UCST) systems (poly(acrylamide) brushes) for comparison purposes, we did not observe the de-swelling of water molecules at a given range of temperatures. By analyzing the pair correlation functions and the coordination numbers, the de-swelling of the water molecules occurred distinctly around the isopropyl group of the P(NIPAAm) brush above the LCST because C(NIPAAm) does not offer sufficient interaction with the water molecules via the hydrogen bonding type of secondary interaction. We also found that the contribution of the N(NIPAAm)-O(water) pair is quite small because of the steric hindrance of the isopropyl group. By analyzing the change in the hydrogen bonds, the hydrogen bonds between polar groups and water molecules in the P(NIPAAm) brushes weaken with increasing temperature, which leads to the de-swelling of the water molecules out of the brushes above the LCST. Below the LCST, the change in the hydrogen bonds is not significant. Again, the contribution of the NH(NIPAAm)-water pairs is insignificant; the total number of hydrogen bonds is ~20, indicating that the interaction between the NH group and the water molecules is not significant due to steric hindrances. Lastly, we observed that the total surface area of the P(NIPAAm) brushes that is accessible to water molecules is decreased by collapsing the brushes followed by the de-swelling of water molecules above the LCST.
|
6 |
Volume Phase Transitions in Surface-Tethered, Photo-Cross-Linked Poly(N-isopropylacrylamide) NetworksVidyasagar, Ajay Kumar 30 June 2010 (has links)
The overall thrust of this dissertation is to gain a comprehensive understanding over the factors that govern the performance and behavior of ultra-thin, cross-linked polymer films. Poly(NIPAAm) was used as a model polymer to study volume phase transition in surface tethered networks.
Poly(NIPAAm) undergoes a reversible phase transition at approximately 32°C between a swollen hydrophilic random coil to a collapsed hydrophobic globule state, thought to be caused by increased hydrophobic attractions between the isopropyl groups at elevated temperatures. We present a simple photochemical technique for fabricating structured polymer networks, enabling the construction of responsive surfaces with unique properties. The approach is based on the photo-cross-linking of copolymers synthesized from N-isopropylacrylamide and methacroyloxybenzophenone (MaBP). In order correlate layer swelling to the MaBP content, we have studied the swelling behavior of such layers in contact with aqueous solutions with neutron reflection.
The cross-linked networks provide a three-dimensional scaffold to host a variety of functionalities. These networks serve as a platform which can be used to amplify small local perturbations induced by various stimuli like temperature, pH, solvent, ionic strength and peptide modified hydrogels to bring about a macroscopic change. Neutron reflection experiments have shown that the volume-phase transition of a surface-tethered, cross-linked poly(NIPAAm) network coincided with the two-phase region of uncross-linked poly(NIPAAm) in solution. Parallel measurements with ATR-FTIR investigating the effect of temperature, pH and salts suggest that the discontinuous transition is the result of cooperative dehydration of the isopropyl groups, with water remaining confined between amide groups in the collapsed state as weakly hydrogen bonded bridges. Hybrid polymers with specific peptide sequences have shown specific response to external cues such as pH and metal ions exhibiting unique phase behavior.
|
Page generated in 0.0292 seconds