• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 18
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 57
  • 22
  • 15
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Spinophilin-Dependent Regulation of the Phosphorylation, Protein Interactions, and Function of the GluN2B Subunit of the NMDAR and its Implications in Neuronal Cell Death

Beiraghi Salek, Asma 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Excitotoxicity, a major hallmark of neurodegeneration associated with cerebral ischemia, is a result of accumulation of extracellular glutamate. This excess glutamate leads to hyperactivation of glutamate receptors such as the N-methyl-D-asparate (NMDA) receptors (NMDARs) following the activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPARs). Excessive activation of NMDARs causes an influx of calcium, which can eventually activate apoptotic pathways and lead to death of neurons. Regulation of NMDAR subunit composition, localization, surface expression, and activity can balance cell survival via activation of either pro-death or pro-survival pathways after a course of an ischemic insult. Specifically, phosphorylation of different NMDAR subunits defines their activity and downstream signaling pathways. NMDARs are phosphorylated by multiple kinases and dephosphorylated by different phosphatases. Besides phosphatases and kinases, per se, phosphorylation of synaptic proteins that regulate kinase or phosphatase targeting and activity also mediate NMDAR phosphorylation. Spinophilin, a major synaptic scaffolding and protein phosphatase 1 (PP1) targeting protein, mediates substrate phosphorylation via its ability to bind PP1. Our studies focus on delineating the role of spinophilin in the regulation of phosphorylation and function of the GluN2B subunit of the NMDA receptor as well as the role of spinophilin in modulating glutamate-induced neurotoxicity. Interestingly, our data demonstrate that spinophilin sequesters PP1 away from GluN2B thereby enhancing phosphorylation of GluN2B at Ser-1284. These changes impact GluN2B protein interactions, subcellular localization, and surface expression, leading to alterations in the amount of calcium entering the neuron via GluN2B-containing NMDARs. Our data show that spinophilin biphasically regulates GluN2B function. Specifically, Ser-1284 phosphorylation enhances calcium influx through GluN2B containing NMDA receptors, but spinophilin leads to dramatic decreases in the surface expression of the receptor independent of Ser-1284 phosphorylation. Moreover, in spinophilin knockout mice, we observe less PP1 binding to GluN2B and less phosphorylation of Ser-1284, but more surface expression of GluN2B and greater levels of caspase activity. Together, these observations suggest a potential neuroprotective role for spinophilin by decreasing GluN2B-containing NMDA receptor-dependent surface expression and thereby decreasing intracellular calcium and neuronal cell death.
32

Cross-talk and regulation between glutamate and GABAB receptors

Kantamneni, Sriharsha 23 March 2015 (has links)
Yes / Brain function depends on co-ordinated transmission of signals from both excitatory and inhibitory neurotransmitters acting upon target neurons. NMDA, AMPA and mGluR receptors are the major subclasses of glutamate receptors that are involved in excitatory transmission at synapses, mechanisms of activity dependent synaptic plasticity, brain development and many neurological diseases. In addition to canonical role of regulating presynaptic release and activating postsynaptic potassium channels, GABAB receptors also regulate glutamate receptors. There is increasing evidence that metabotropic GABAB receptors are now known to play an important role in modulating the excitability of circuits throughout the brain by directly influencing different types of postsynaptic glutamate receptors. Specifically, GABAB receptors affect the expression, activity and signaling of glutamate receptors under physiological and pathological conditions. Conversely, NMDA receptor activity differentially regulates GABAB receptor subunit expression, signaling and function. In this review I will describe how GABAB receptor activity influence glutamate receptor function and vice versa. Such a modulation has widespread implications for the control of neurotransmission, calcium-dependent neuronal function, pain pathways and in various psychiatric and neurodegenerative diseases.
33

The Impact of ROS Scavenging on NMDA and AMPA Receptor Whole Cell Currents in Pyramidal Neurons of the Anoxia Tolerant Western Painted Turtle

Dukoff, David 22 November 2013 (has links)
Extended periods of oxygen deprivation cause brain death in mammals but the western painted turtle overwinters in anoxic mud for months without damage. Neural protection is achieved through decreases in the whole cell currents of N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (NMDAR and AMPAR) that are dependent on a mild increase in intracellular calcium from the mitochondria. The goal of this research was to determine if natural anoxic decreases in reactive oxidative species (ROS) serve as the signal to bring about these changes. Reductions in cellular ROS levels were demonstrated to have no effect on AMPAR currents or intracellular calcium and produced massive increases in NMDAR currents, indicating that ROS depression does not directly mediate anoxic alterations. Interestingly, mammalian neural tissue also experiences a similar increase in NMDAR whole cell current in response to reducing agents suggesting a possible conserved mechanism for normoxic receptor control.
34

The Impact of ROS Scavenging on NMDA and AMPA Receptor Whole Cell Currents in Pyramidal Neurons of the Anoxia Tolerant Western Painted Turtle

Dukoff, David 22 November 2013 (has links)
Extended periods of oxygen deprivation cause brain death in mammals but the western painted turtle overwinters in anoxic mud for months without damage. Neural protection is achieved through decreases in the whole cell currents of N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (NMDAR and AMPAR) that are dependent on a mild increase in intracellular calcium from the mitochondria. The goal of this research was to determine if natural anoxic decreases in reactive oxidative species (ROS) serve as the signal to bring about these changes. Reductions in cellular ROS levels were demonstrated to have no effect on AMPAR currents or intracellular calcium and produced massive increases in NMDAR currents, indicating that ROS depression does not directly mediate anoxic alterations. Interestingly, mammalian neural tissue also experiences a similar increase in NMDAR whole cell current in response to reducing agents suggesting a possible conserved mechanism for normoxic receptor control.
35

Investigando os aprendizados subsequentes : mecanismos plásticos e dependência temporal

Crestani, Ana Paula January 2018 (has links)
A formação de memórias de medo contextuais, como as estudadas no presente trabalho, requer a indução da plasticidade sináptica iniciada pela ativação de receptores transmembrana localizados nos neurônios de estruturas encefálicas como o hipocampo. O fluxo iônico mediado pelos receptores N-metil-D-aspartato (NMDARs) é essencial para ativar vias de sinalização intracelular que darão suporte à formação da memória. No entanto, esses receptores parecem não ser necessários em situações onde os animais passaram por uma experiência prévia similar a que está sendo aprendida. Dessa forma, um aprendizado anterior pode modificar os mecanismos de plasticidade que serão utilizados para codificar uma nova informação, caracterizando um fenômeno de metaplasticidade. Esse fenômeno ocorre quando os animais são pré-expostos ao local onde posteriormente serão submetidos a um aprendizado associativo ou quando são re-submetidos a mesma tarefa comportamental com dicas contextuais/espaciais diferentes. No presente trabalho, investigamos (i) os mecanismos de plasticidade sináptica (receptores) e de plasticidade não-sináptica (excitabilidade neuronal) recrutados para a formação do segundo aprendizado e (ii) se a independência dos NMDARs é mantida quando a memória anterior foi adquirida remotamente. Os animais utilizados nesse trabalho (camundongos ou ratos) foram expostos a dois aprendizados sequenciais realizados na tarefa de condicionamento aversivo ao contexto (CAC). O intervalo entre os condicionamentos foi de dois dias nos experimentos do Capítulo I e de três ou quarenta dias nos experimentos do Capítulo II. Cada aprendizado ocorreu em uma caixa de condicionamento com características próprias de formato, odor e iluminação (contexto A ou contexto B), sendo que o primeiro aprendizado ocorreu no contexto A e o segundo no contexto B. Nos experimentos do Capítulo I foram avaliadas no hipocampo dorsal as modificações na excitabilidade neuronal hipocampal induzidas pelo primeiro condicionamento, bem como os receptores envolvidos com a aquisição da memória subsequente e a sobreposição neuronal entre os dois aprendizados. Com a utilização do camundongo transgênico Teg-Tag foi possível identificar os neurônios recrutados para o primeiro aprendizado. Esse animal tem a expressão da proteína fluorescente verde (GFP, do inglês, green fluorescent protein) controlada pela ativação do gene c-fos, que é fisiologicamente transcrito após a atividade neuronal. Dessa forma, os neurônios ativados pelo aprendizado são marcados com GFP. Através da técnica de patch clamp foi observado que os neurônios GFP+ mantiveram a excitabilidade elevada por até dois dias após o treinamento no CAC. Além disso, a identificação dos neurônios recrutados 8 para o aprendizado subsequente foi realizada através da marcação imunofluorescente da proteína Fos, no seu pico de expressão endógena, noventa minutos após o re-treino. Foi observada uma maior sobreposição neuronal (GFP+, Fos+) quando os animais foram retreinados no mesmo contexto dois dias após o primeiro treino. Uma sobreposição intermediária (GFP+, Fos+) foi vista quando os animais tiveram o segundo condicionamento no contexto B, sendo ela significativamente maior do que a sobreposição nos animais não re-treinados. Adicionalmente, foi demonstrado que a aquisição do aprendizado subsequente é mediada por receptores metabotrópicos glutamatérgicos (mGluRs) ao invés de NMDARs. No Capítulo II foi investigado se uma memória remota, adquirida há quarenta dias, ainda seria capaz de influenciar nos mecanismos de plasticidade recrutados para aquisição do aprendizado subsequente. A dinâmica da consolidação sistêmica foi considerada nesses experimentos já que a evocação da memória remota passa a depender de estruturas encefálicas neocorticais, sem recrutar a atividade hipocampal. Apesar da evocação da memória remota não requerer a atividade hipocampal, foi observado que a aquisição do aprendizado subsequente a uma memória remota necessita a atividade de pelo menos uma sub-região do hipocampo (dorsal ou ventral). Complementarmente, os resultados indicaram que, quando o intervalo entre os aprendizados é aumentado (de três para quarenta dias), a formação do aprendizado subsequente, que era independente de NMDARs, volta a depender da plasticidade sináptica mediada por esses receptores no hipocampo (dorsal e ventral). Juntos, nossos resultados sugerem que o primeiro aprendizado causa um aumento da excitabilidade neuronal e modifica a plasticidade sináptica recrutada para o aprendizado subsequente, sendo este último mediado por mGluRs ao invés de NMDARs. Além disso, a metaplasticidade induzida pelo primeiro condicionamento é transiente; quando o intervalo entre as exposições é aumentado, o segundo aprendizado passa a depender novamente da ativação dos NMDARs. / Contextual fear memory formation, like the ones explored in the current work, requires the induction of the synaptic plasticity mediated by the activation of transmembrane receptors that are present in the brain structures as the hippocampus. The ionic flux through the N-methylaspartate- D-aspartate is crucial for activation of the intracellular signaling pathways that will support memory formation. However, these receptors are not necessary when animals had a prior similar learning. In this way, a previous learning can modify the plasticity mechanism that will be recruited to encode a new information, featuring a metaplasticity phenomenon. This phenomenon occurs when animals are pre-exposed to an environment where they will learn an associative learning later or when animals are re-exposed to the same behavioral task with distinct contextual/spatial cues. In the present study, we investigated (i) the synaptic plasticity mechanisms (receptors) and the non-synaptic plasticity mechanisms (neuronal excitability) required for the acquisition of the second learning and (ii) whether a subsequent learning that occurs in a remote time-point is still NMDAR-independent. The animals used in this study (mice or rats) were exposed to two sequential learnings that were performed in the contextual fear conditioning (CFC). The interval between conditionings were two days in the experiments of Chapter I and three or forty days in the experiments of the Chapter II. Each learning was performed in a box with differences on shape, odor and illumination (context A or context B). The first learning occurred in the context A followed by learning on context B. In the experiments of Chapter I it was evaluated the changes in the hippocampal neuronal excitability induced by the first conditioning, the receptors involved with the acquisition of the subsequent memory and the neuronal overlapping between the two sequential learnings. The Teg-Tag transgenic mouse allowed to identify the neurons activated for the first learning experience. This animal has the GFP expression under control of c-fos promoter that is activated by neuronal activity. It was shown by patch clamp that GFP+ neurons are still more excitable two days after learning. Also, the identification of neurons recruited for the subsequent learning was made through immunofluorescent staining of the Fos protein in its peak of endogenous expression, ninety minutes after learning. A greater overlapping (GFP+, Fos+) was observed when animals were retrained in the same context two days after first training. An intermediate overlapping was observed when animals were conditioned in the context B and this expression was significantly higher when compared to animals that were not 10 retrained in either context. Additionally, it was shown that acquisition of the subsequent learning is mediated by metabotropic glutamate receptors (mGluRs) instead of NMDARs In the Chapter II it was investigated whether a remote memory, acquired forty days earlier, is still able to influence in the synaptic plasticity mechanisms recruited for the acquisition of the subsequent learning. Systems consolidation dynamics was considered in these experiments because memory retrieval of a remote memory depends on neocortical brain regions, it not requires hippocampal activity. It was confirmed that hippocampus is not necessary for remote memory retrieval, however at least one longitudinal division of the hippocampus (dorsal or ventral) is essential for learning following a prior remote memory. Moreover, the results indicate that acquisition of the second learning is once again mediated by NMDARs in the hippocampus when the interval between learnings is extended from three to forty days. Altogether, our results suggest that the first learning lead to an increase in the neuronal excitability and modify the synaptic plasticity mechanism recruited for following learning, mGluR are required instead of NMDAR. Furthermore, the metaplasticity induced by first conditioning is transient; the second learning once again requires NMDARs activation when the interval between learnings is longer.
36

Efeitos da administra??o aguda de quetamina sobre as oscila??es eletrofisiol?gicas da regi?o CA1 hipocampal

Caixeta, Fabio Viegas 05 February 2014 (has links)
Made available in DSpace on 2014-12-17T15:29:20Z (GMT). No. of bitstreams: 1 FabioVC_TESE.pdf: 9520410 bytes, checksum: c524d37a35a8c0c0640e3ddb7b8c1a48 (MD5) Previous issue date: 2014-02-05 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Em humanos, a administração de quetamina - um antagonista não-competitivo do receptor glutamatérgico do tipo NMDA - causa um amplo espectro de sintomas associados à esquizofrenia. Dado o papel dos ritmos cerebrais na realização de tarefas cognitivas, tem sido sugerido que a patofisiologia da esquizofrenia estaria relacionada a desordens de oscilações corticais. Neste estudo utilizamos o registro do potencial de campo elétrico em múltiplos eletrodos implantados no hipocampo de ratos sob o efeito de injeções sistêmicas de doses sub-anestésicas de quetamina (25, 50 e 75 mg/kg IP) para investigarmos as alterações comportamentais e eletrofisiológicas neste modelo animal de psicose. A quetamina alterou o padrão de locomoção e causou diversas mudanças na dinâmica de oscilações neurais. A potência nas bandas de frequência gama e oscilações de alta frequência (OAF) aumentou em todas as profundidades do eixo CA1-giro denteado, enquanto a potência de teta variou dependendo da camada registrada. A coerência de fase de gama e de OAF aumentou entre as camadas de CA1. A quetamina aumentou o acoplamento entre frequências (AEF) de fase-amplitude entre teta e OAF em todas as doses, mas teve efeitos opostos no AEF entre teta e gama de acordo com a dose. Nossos resultados demonstram que o modelo de esquizofrenia induzido por hipofunção dos receptores NMDA está associado com alterações de interações de alta ordem entre oscilações neurais
37

Investigando os aprendizados subsequentes : mecanismos plásticos e dependência temporal

Crestani, Ana Paula January 2018 (has links)
A formação de memórias de medo contextuais, como as estudadas no presente trabalho, requer a indução da plasticidade sináptica iniciada pela ativação de receptores transmembrana localizados nos neurônios de estruturas encefálicas como o hipocampo. O fluxo iônico mediado pelos receptores N-metil-D-aspartato (NMDARs) é essencial para ativar vias de sinalização intracelular que darão suporte à formação da memória. No entanto, esses receptores parecem não ser necessários em situações onde os animais passaram por uma experiência prévia similar a que está sendo aprendida. Dessa forma, um aprendizado anterior pode modificar os mecanismos de plasticidade que serão utilizados para codificar uma nova informação, caracterizando um fenômeno de metaplasticidade. Esse fenômeno ocorre quando os animais são pré-expostos ao local onde posteriormente serão submetidos a um aprendizado associativo ou quando são re-submetidos a mesma tarefa comportamental com dicas contextuais/espaciais diferentes. No presente trabalho, investigamos (i) os mecanismos de plasticidade sináptica (receptores) e de plasticidade não-sináptica (excitabilidade neuronal) recrutados para a formação do segundo aprendizado e (ii) se a independência dos NMDARs é mantida quando a memória anterior foi adquirida remotamente. Os animais utilizados nesse trabalho (camundongos ou ratos) foram expostos a dois aprendizados sequenciais realizados na tarefa de condicionamento aversivo ao contexto (CAC). O intervalo entre os condicionamentos foi de dois dias nos experimentos do Capítulo I e de três ou quarenta dias nos experimentos do Capítulo II. Cada aprendizado ocorreu em uma caixa de condicionamento com características próprias de formato, odor e iluminação (contexto A ou contexto B), sendo que o primeiro aprendizado ocorreu no contexto A e o segundo no contexto B. Nos experimentos do Capítulo I foram avaliadas no hipocampo dorsal as modificações na excitabilidade neuronal hipocampal induzidas pelo primeiro condicionamento, bem como os receptores envolvidos com a aquisição da memória subsequente e a sobreposição neuronal entre os dois aprendizados. Com a utilização do camundongo transgênico Teg-Tag foi possível identificar os neurônios recrutados para o primeiro aprendizado. Esse animal tem a expressão da proteína fluorescente verde (GFP, do inglês, green fluorescent protein) controlada pela ativação do gene c-fos, que é fisiologicamente transcrito após a atividade neuronal. Dessa forma, os neurônios ativados pelo aprendizado são marcados com GFP. Através da técnica de patch clamp foi observado que os neurônios GFP+ mantiveram a excitabilidade elevada por até dois dias após o treinamento no CAC. Além disso, a identificação dos neurônios recrutados 8 para o aprendizado subsequente foi realizada através da marcação imunofluorescente da proteína Fos, no seu pico de expressão endógena, noventa minutos após o re-treino. Foi observada uma maior sobreposição neuronal (GFP+, Fos+) quando os animais foram retreinados no mesmo contexto dois dias após o primeiro treino. Uma sobreposição intermediária (GFP+, Fos+) foi vista quando os animais tiveram o segundo condicionamento no contexto B, sendo ela significativamente maior do que a sobreposição nos animais não re-treinados. Adicionalmente, foi demonstrado que a aquisição do aprendizado subsequente é mediada por receptores metabotrópicos glutamatérgicos (mGluRs) ao invés de NMDARs. No Capítulo II foi investigado se uma memória remota, adquirida há quarenta dias, ainda seria capaz de influenciar nos mecanismos de plasticidade recrutados para aquisição do aprendizado subsequente. A dinâmica da consolidação sistêmica foi considerada nesses experimentos já que a evocação da memória remota passa a depender de estruturas encefálicas neocorticais, sem recrutar a atividade hipocampal. Apesar da evocação da memória remota não requerer a atividade hipocampal, foi observado que a aquisição do aprendizado subsequente a uma memória remota necessita a atividade de pelo menos uma sub-região do hipocampo (dorsal ou ventral). Complementarmente, os resultados indicaram que, quando o intervalo entre os aprendizados é aumentado (de três para quarenta dias), a formação do aprendizado subsequente, que era independente de NMDARs, volta a depender da plasticidade sináptica mediada por esses receptores no hipocampo (dorsal e ventral). Juntos, nossos resultados sugerem que o primeiro aprendizado causa um aumento da excitabilidade neuronal e modifica a plasticidade sináptica recrutada para o aprendizado subsequente, sendo este último mediado por mGluRs ao invés de NMDARs. Além disso, a metaplasticidade induzida pelo primeiro condicionamento é transiente; quando o intervalo entre as exposições é aumentado, o segundo aprendizado passa a depender novamente da ativação dos NMDARs. / Contextual fear memory formation, like the ones explored in the current work, requires the induction of the synaptic plasticity mediated by the activation of transmembrane receptors that are present in the brain structures as the hippocampus. The ionic flux through the N-methylaspartate- D-aspartate is crucial for activation of the intracellular signaling pathways that will support memory formation. However, these receptors are not necessary when animals had a prior similar learning. In this way, a previous learning can modify the plasticity mechanism that will be recruited to encode a new information, featuring a metaplasticity phenomenon. This phenomenon occurs when animals are pre-exposed to an environment where they will learn an associative learning later or when animals are re-exposed to the same behavioral task with distinct contextual/spatial cues. In the present study, we investigated (i) the synaptic plasticity mechanisms (receptors) and the non-synaptic plasticity mechanisms (neuronal excitability) required for the acquisition of the second learning and (ii) whether a subsequent learning that occurs in a remote time-point is still NMDAR-independent. The animals used in this study (mice or rats) were exposed to two sequential learnings that were performed in the contextual fear conditioning (CFC). The interval between conditionings were two days in the experiments of Chapter I and three or forty days in the experiments of the Chapter II. Each learning was performed in a box with differences on shape, odor and illumination (context A or context B). The first learning occurred in the context A followed by learning on context B. In the experiments of Chapter I it was evaluated the changes in the hippocampal neuronal excitability induced by the first conditioning, the receptors involved with the acquisition of the subsequent memory and the neuronal overlapping between the two sequential learnings. The Teg-Tag transgenic mouse allowed to identify the neurons activated for the first learning experience. This animal has the GFP expression under control of c-fos promoter that is activated by neuronal activity. It was shown by patch clamp that GFP+ neurons are still more excitable two days after learning. Also, the identification of neurons recruited for the subsequent learning was made through immunofluorescent staining of the Fos protein in its peak of endogenous expression, ninety minutes after learning. A greater overlapping (GFP+, Fos+) was observed when animals were retrained in the same context two days after first training. An intermediate overlapping was observed when animals were conditioned in the context B and this expression was significantly higher when compared to animals that were not 10 retrained in either context. Additionally, it was shown that acquisition of the subsequent learning is mediated by metabotropic glutamate receptors (mGluRs) instead of NMDARs In the Chapter II it was investigated whether a remote memory, acquired forty days earlier, is still able to influence in the synaptic plasticity mechanisms recruited for the acquisition of the subsequent learning. Systems consolidation dynamics was considered in these experiments because memory retrieval of a remote memory depends on neocortical brain regions, it not requires hippocampal activity. It was confirmed that hippocampus is not necessary for remote memory retrieval, however at least one longitudinal division of the hippocampus (dorsal or ventral) is essential for learning following a prior remote memory. Moreover, the results indicate that acquisition of the second learning is once again mediated by NMDARs in the hippocampus when the interval between learnings is extended from three to forty days. Altogether, our results suggest that the first learning lead to an increase in the neuronal excitability and modify the synaptic plasticity mechanism recruited for following learning, mGluR are required instead of NMDAR. Furthermore, the metaplasticity induced by first conditioning is transient; the second learning once again requires NMDARs activation when the interval between learnings is longer.
38

Investigando os aprendizados subsequentes : mecanismos plásticos e dependência temporal

Crestani, Ana Paula January 2018 (has links)
A formação de memórias de medo contextuais, como as estudadas no presente trabalho, requer a indução da plasticidade sináptica iniciada pela ativação de receptores transmembrana localizados nos neurônios de estruturas encefálicas como o hipocampo. O fluxo iônico mediado pelos receptores N-metil-D-aspartato (NMDARs) é essencial para ativar vias de sinalização intracelular que darão suporte à formação da memória. No entanto, esses receptores parecem não ser necessários em situações onde os animais passaram por uma experiência prévia similar a que está sendo aprendida. Dessa forma, um aprendizado anterior pode modificar os mecanismos de plasticidade que serão utilizados para codificar uma nova informação, caracterizando um fenômeno de metaplasticidade. Esse fenômeno ocorre quando os animais são pré-expostos ao local onde posteriormente serão submetidos a um aprendizado associativo ou quando são re-submetidos a mesma tarefa comportamental com dicas contextuais/espaciais diferentes. No presente trabalho, investigamos (i) os mecanismos de plasticidade sináptica (receptores) e de plasticidade não-sináptica (excitabilidade neuronal) recrutados para a formação do segundo aprendizado e (ii) se a independência dos NMDARs é mantida quando a memória anterior foi adquirida remotamente. Os animais utilizados nesse trabalho (camundongos ou ratos) foram expostos a dois aprendizados sequenciais realizados na tarefa de condicionamento aversivo ao contexto (CAC). O intervalo entre os condicionamentos foi de dois dias nos experimentos do Capítulo I e de três ou quarenta dias nos experimentos do Capítulo II. Cada aprendizado ocorreu em uma caixa de condicionamento com características próprias de formato, odor e iluminação (contexto A ou contexto B), sendo que o primeiro aprendizado ocorreu no contexto A e o segundo no contexto B. Nos experimentos do Capítulo I foram avaliadas no hipocampo dorsal as modificações na excitabilidade neuronal hipocampal induzidas pelo primeiro condicionamento, bem como os receptores envolvidos com a aquisição da memória subsequente e a sobreposição neuronal entre os dois aprendizados. Com a utilização do camundongo transgênico Teg-Tag foi possível identificar os neurônios recrutados para o primeiro aprendizado. Esse animal tem a expressão da proteína fluorescente verde (GFP, do inglês, green fluorescent protein) controlada pela ativação do gene c-fos, que é fisiologicamente transcrito após a atividade neuronal. Dessa forma, os neurônios ativados pelo aprendizado são marcados com GFP. Através da técnica de patch clamp foi observado que os neurônios GFP+ mantiveram a excitabilidade elevada por até dois dias após o treinamento no CAC. Além disso, a identificação dos neurônios recrutados 8 para o aprendizado subsequente foi realizada através da marcação imunofluorescente da proteína Fos, no seu pico de expressão endógena, noventa minutos após o re-treino. Foi observada uma maior sobreposição neuronal (GFP+, Fos+) quando os animais foram retreinados no mesmo contexto dois dias após o primeiro treino. Uma sobreposição intermediária (GFP+, Fos+) foi vista quando os animais tiveram o segundo condicionamento no contexto B, sendo ela significativamente maior do que a sobreposição nos animais não re-treinados. Adicionalmente, foi demonstrado que a aquisição do aprendizado subsequente é mediada por receptores metabotrópicos glutamatérgicos (mGluRs) ao invés de NMDARs. No Capítulo II foi investigado se uma memória remota, adquirida há quarenta dias, ainda seria capaz de influenciar nos mecanismos de plasticidade recrutados para aquisição do aprendizado subsequente. A dinâmica da consolidação sistêmica foi considerada nesses experimentos já que a evocação da memória remota passa a depender de estruturas encefálicas neocorticais, sem recrutar a atividade hipocampal. Apesar da evocação da memória remota não requerer a atividade hipocampal, foi observado que a aquisição do aprendizado subsequente a uma memória remota necessita a atividade de pelo menos uma sub-região do hipocampo (dorsal ou ventral). Complementarmente, os resultados indicaram que, quando o intervalo entre os aprendizados é aumentado (de três para quarenta dias), a formação do aprendizado subsequente, que era independente de NMDARs, volta a depender da plasticidade sináptica mediada por esses receptores no hipocampo (dorsal e ventral). Juntos, nossos resultados sugerem que o primeiro aprendizado causa um aumento da excitabilidade neuronal e modifica a plasticidade sináptica recrutada para o aprendizado subsequente, sendo este último mediado por mGluRs ao invés de NMDARs. Além disso, a metaplasticidade induzida pelo primeiro condicionamento é transiente; quando o intervalo entre as exposições é aumentado, o segundo aprendizado passa a depender novamente da ativação dos NMDARs. / Contextual fear memory formation, like the ones explored in the current work, requires the induction of the synaptic plasticity mediated by the activation of transmembrane receptors that are present in the brain structures as the hippocampus. The ionic flux through the N-methylaspartate- D-aspartate is crucial for activation of the intracellular signaling pathways that will support memory formation. However, these receptors are not necessary when animals had a prior similar learning. In this way, a previous learning can modify the plasticity mechanism that will be recruited to encode a new information, featuring a metaplasticity phenomenon. This phenomenon occurs when animals are pre-exposed to an environment where they will learn an associative learning later or when animals are re-exposed to the same behavioral task with distinct contextual/spatial cues. In the present study, we investigated (i) the synaptic plasticity mechanisms (receptors) and the non-synaptic plasticity mechanisms (neuronal excitability) required for the acquisition of the second learning and (ii) whether a subsequent learning that occurs in a remote time-point is still NMDAR-independent. The animals used in this study (mice or rats) were exposed to two sequential learnings that were performed in the contextual fear conditioning (CFC). The interval between conditionings were two days in the experiments of Chapter I and three or forty days in the experiments of the Chapter II. Each learning was performed in a box with differences on shape, odor and illumination (context A or context B). The first learning occurred in the context A followed by learning on context B. In the experiments of Chapter I it was evaluated the changes in the hippocampal neuronal excitability induced by the first conditioning, the receptors involved with the acquisition of the subsequent memory and the neuronal overlapping between the two sequential learnings. The Teg-Tag transgenic mouse allowed to identify the neurons activated for the first learning experience. This animal has the GFP expression under control of c-fos promoter that is activated by neuronal activity. It was shown by patch clamp that GFP+ neurons are still more excitable two days after learning. Also, the identification of neurons recruited for the subsequent learning was made through immunofluorescent staining of the Fos protein in its peak of endogenous expression, ninety minutes after learning. A greater overlapping (GFP+, Fos+) was observed when animals were retrained in the same context two days after first training. An intermediate overlapping was observed when animals were conditioned in the context B and this expression was significantly higher when compared to animals that were not 10 retrained in either context. Additionally, it was shown that acquisition of the subsequent learning is mediated by metabotropic glutamate receptors (mGluRs) instead of NMDARs In the Chapter II it was investigated whether a remote memory, acquired forty days earlier, is still able to influence in the synaptic plasticity mechanisms recruited for the acquisition of the subsequent learning. Systems consolidation dynamics was considered in these experiments because memory retrieval of a remote memory depends on neocortical brain regions, it not requires hippocampal activity. It was confirmed that hippocampus is not necessary for remote memory retrieval, however at least one longitudinal division of the hippocampus (dorsal or ventral) is essential for learning following a prior remote memory. Moreover, the results indicate that acquisition of the second learning is once again mediated by NMDARs in the hippocampus when the interval between learnings is extended from three to forty days. Altogether, our results suggest that the first learning lead to an increase in the neuronal excitability and modify the synaptic plasticity mechanism recruited for following learning, mGluR are required instead of NMDAR. Furthermore, the metaplasticity induced by first conditioning is transient; the second learning once again requires NMDARs activation when the interval between learnings is longer.
39

Interactions Between Prenatal Kynurenic Acid Exposure and Adolescent Brain Development in the Emergence of Cognitive Deficits in Schizophrenia

Pershing, Michelle L. January 2014 (has links)
No description available.
40

Acute Cannabinoid Treatment 'in vivo' Causes an Astroglial CB1R-Dependent LTD At Excitatory CA3-CA1 Synapses Involving NMDARs and Protein Synthesis

Kesner, Philip 19 November 2012 (has links)
Cannabinoids have been shown to alter synaptic plasticity but the mechanism by which this occurs at hippocampal CA3-CA1 synapses in vivo is not yet known. Utilizing in vivo electrophysiological recordings of field excitatory postsynaptic potentials (fEPSP) on anesthetized rats and mice as well as three lines of conditional knockout mouse models, the objective was to show a two-part mechanistic breakdown of cannabinoid-evoked CA3-CA1 long-term depression (LTD) in its induction as well as early and later-phase expression stages. It was determined that this cannabinoid-induced in vivo LTD requires cannabinoid type-1 receptors (CB1Rs) on astrocytes, but not CB1Rs on glutamatergic or GABAergic neuronal axons/terminals. Pharmacological testing determined that cannabinoid-induced in vivo LTD also requires activation of NMDA receptors (NMDAR) and subsequent postsynaptic endocytosis of AMPA receptors (AMPAR). There exists a clear role for NR2B-containing NMDARs in a persistent, transitory form, potentially related to prolonged or delayed glutamate release (possibly as a result of the astrocytic network). A key determination of the expression phase is the involvement of new protein synthesis (using translation and transcription inhibitors) – further evidence of the long-term action of the synaptic plasticity from a single cannabinoid dose.

Page generated in 0.0373 seconds