• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 231
  • 40
  • 34
  • 14
  • 11
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 373
  • 373
  • 150
  • 116
  • 51
  • 48
  • 45
  • 44
  • 35
  • 35
  • 35
  • 35
  • 31
  • 30
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Control of Hyperbolic Heat Transfer Mechanisms Application to the Distributed Concentrated Solar Collectors

Elmetennani, Shahrazed 04 1900 (has links)
This dissertation addresses the flow control problem in hyperbolic heat transfer mechanisms. It raises in concentrated distributed solar collectors to enhance their production efficiency under the unpredictable variations of the solar energy and the external disturbances. These factors which are either locally measured (the solar irradiance) or inaccessible for measurement (the collectors’ cleanliness) affect the source term of the distributed model and represent a major difficulty for the control design. Moreover, the temperature in the collector can only be measured at the boundaries. In this dissertation, we propose new adaptive control approaches to provide the adequate level of heat while coping with the unpredictable varying disturbances. First, we design model based control strategies for a better efficiency, in terms of accuracy and response time, with a relatively reduced complexity. Second, we enhance the controllers with on-line adaptation laws to continuously update the efficient value of the external conditions. In this study, we approach the control problem using both, the infinite dimensional model (late lumping) and a finite dimensional approximate representation (early lumping). For the early lumping approach, we introduce a new reduced order bilinear approximate model for system analysis and control design. This approximate state representation is then used to derive a nonlinear state feedback resorting to Lyapunov stability theory. To compensate for the external disturbances and the approximation uncertainties, an adaptive controller is developed based on a phenomenological representation of the system dynamics. For the late lumping approach, we propose two PDE based controllers by stabilization of the reference tracking error distributed profile. The control laws are explicitly defined as functions of the available measurement. The first one is obtained using a direct approach for error stabilization while the second one is derived through a nonlinear mapping. Furthermore, we endow the nonlinear controllers with an adaptation law to cope with the unpredictable unmeasured disturbances. The proposed adaptation law is based on a Proportional plus Integral correction feedback. We show that the control objectives with the required performance can be achieved following both approaches, but yet are conditioned with the physical limitations of the system.
212

Techniques Lyapunov pour une classe de systèmes hybrides et synthèses de contrôleurs à réinitialisation / Lyapunov techniques for a class of hybrid systems and reset controller syntheses for continuous-time plants

Fichera, Francesco 11 October 2013 (has links)
Ce manuscrit présente des résultats de recherche concernant une certaine classe de systèmes hybrides. Les systèmes hybrides peuvent être utilises pour la modélisation de systèmes physiques complexes et hétérogènes dont l’évolution dans le temps présente des phénomènes discrets, tels que les commutations des convertisseurs ou les impacts des systèmes mécaniques. De la même manière, la théorie hybride peut être utilisée pour concevoir des contrôleurs hybrides, en général plus performants par rapport aux contrôleurs a temps continu.Dans ce cadre, les résultats de ce manuscrit peuvent être divises en trois parties. D'abord des résultats de stabilité par rapport à un indice de performance de type Hinfini sont présentes pour une classe plutôt large de systèmes hybrides. Ensuite, nous introduisons de nouvelles architectures de contrôleurs hybrides pour les systèmes à temps continu caractérisées par le fait que leur état peut être réinitialisé en fonction de la trajectoire. Enfin, nous présentons une technique de synthèse convexe pour la conception d'un contrôleur hybride multi-objectif. La comparaison avec les résultats classique met en évidence les avantages en termes de performance par rapport aux contrôleurs a temps continu classiques, tout en préservant la propriété de robustesse et la simplicité de conception.Bien que la théorie hybride soit en plein développement, ces travaux généralisent certains résultats existants, en améliorant la simplicité d’implémentation des solutions grâce à l'utilisation de la programmation semi-definie. En plus les architectures de contrôleurs hybrides présentées ont l'avantage de simplifier la généralisation de quelques résultats classiques concernant la synthèse optimale par rapport à des indices de performance communs. / This dissertation presents some results on hybrid systems. Hybrid systems can be used to model complex physical and heterogeneous systems whose time evolution experiences discrete phenomena, such as commutations in electronic converters or impacts in mechanical systems. In the meantime the hybrid theory can be used to design hybrid controllers which exhibit better performance than the classical continuous-time controllers.In this context, the results in this dissertation can be divided en three parts. First, some stability results with respect to the Hinfinity performance index are presented for a wide class of hybrid controllers. Second, we introduce new hybrid controller architectures for continuous-time systems, where the state of the hybrid controller can be reinitialized depending on the trajectory of the system. Finally, we present a convex synthesis of a multiobjective hybrid controller. The comparisons with the classical results show the improvements that can be achieved with hybrid controllers, maintaining the property of robustness and simplicity of design.Although the hybrid theory is in full development, this work generalizes some existing results by improving the simplicity of their usage by means of semidefinite programming tools. Moreover some hybrid architectures are able to generalize some classic results regarding the optimal synthesis with respect to popular performance indexes.
213

Trajectory Design Based on Robust Optimal Control and Path Following Control / ロバスト最適制御と経路追従制御に基づく軌道設計

Okura, Yuki 25 March 2019 (has links)
付記する学位プログラム名: デザイン学大学院連携プログラム / 京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21761号 / 工博第4578号 / 新制||工||1713(附属図書館) / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 藤本 健治, 教授 泉田 啓, 教授 太田 快人 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
214

Friction compensation in the swing-up control of viscously damped underactuated robotics

De Almeida, Ricardo Galhardo January 2018 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering in the Control Research Group School of Electrical and Information Engineering, Johannesburg, 2017 / In this research, we observed a torque-related limitation in the swing-up control of underactuated mechanical systems which had been integrated with viscous damping in the unactuated joint. The objective of this research project was thus to develop a practical work-around solution to this limitation. The nth order underactuated robotic system is represented in this research as a collection of compounded pendulums with n-1 actuators placed at each joint with the exception of the first joint. This system is referred to as the PAn-1 robot (Passive first joint, followed by n-1 Active joints), with the Acrobot (PA1 robot) and the PAA robot (or PA2 robot) being among the most well-known examples. A number of friction models exist in literature, which include, and are not exclusive to, the Coulomb and the Stribeck effect models, but the viscous damping model was selected for this research since it is more extensively covered in existing literature. The effectiveness of swing-up control using Lyapunov’s direct method when applied on the undamped PAn-1 robot has been vigorously demonstrated in existing literature, but there is no literature that discusses the swing-up control of viscously damped systems. We show, however, that the application of satisfactory swing-up control using Lyapunov’s direct method is constrained to underactuated systems that are either undamped or actively damped (viscous damping integrated into the actuated joints only). The violation of this constraint results in the derivation of a torque expression that cannot be solved for (invertibility problem, for systems described by n > 2) or a torque expression which contains a conditional singularity (singularity problem, for systems with n = 2). This constraint is formally summarised as the matched damping condition, and highlights a clear limitation in the Lyapunov-related swing-up control of underactuated mechanical systems. This condition has significant implications on the practical realisation of the swing-up control of underactuated mechanical systems, which justifies the investigation into the possibility of a work-around. We thus show that the limitation highlighted by the matched damping condition can be overcome through the implementation of the partial feedback linearisation (PFL) technique. Two key contributions are generated from this research as a result, which iii include the gain selection criterion (for Traditional Collocated PFL), and the convergence algorithm (for noncollocated PFL). The gain selection criterion is an analytical solution that is composed of a set of inequalities that map out a geometric region of appropriate gains in the swing-up gain space. Selecting a gain combination within this region will ensure that the fully-pendent equilibrium point (FPEP) is unstable, which is a necessary condition for swing-up control when the system is initialised near the FPEP. The convergence algorithm is an experimental solution that, once executed, will provide information about the distal pendulum’s angular initial condition that is required to swing-up a robot with a particular angular initial condition for the proximal pendulum, along with the minimum gain that is required to execute the swing-up control in this particular configuration. Significant future contributions on this topic may result from the inclusion of more complex friction models. Additionally, the degree of actuation of the system may be reduced through the implementation of energy storing components, such as torsional springs, at the joint. In summary, we present two contributions in the form of the gain selection criterion and the convergence algorithm which accommodate the circumnavigation of the limitation formalised as the matched damping condition. This condition pertains to the Lyapunov-related swing-up control of underactuated mechanical systems that have been integrated with viscous damping in the unactuated joint. / CK2018
215

Low-cost control of discontinuous systems including impacts and friction

Svahn, Fredrik January 2007 (has links)
For a successful design of an engineering system it is essential to pay careful attention to its dynamic response. This is particularly true, in the case of nonlinear systems, since they can exhibit very complex dynamic behaviour, including multiple co-existing stable solutions and chaotic motions, characterized by large sensitivity to initial conditions. In some systems nonlinear characteristics are desired and designed for, but in other cases they are unwanted and can cause fatigue and failure. A type of dynamical system which is highly nonlinear is discontinuous or non-smooth systems. In this work, systems with impacts are primarily investigated, and this is a typical example of a discontinuous system. To enhance or optimize the performance of dynamical systems, some kind of control can be implemented. This thesis concerns implementation of low-cost control strategies for discontinuous systems. Low-cost control means that a minimum amount of energy is used when performing the control actions, which is a desirable situation regardless of the application. The disadvantage of such a method is that the performance might be limited as compared with a control strategy with no restrictions on energy consumption. In this work, the control objective is to enforce a continuous or discontinuous grazing bifurcation of the system, whichever is desirable. In Paper A, the dynamic response and bifurcation behaviour of an impactoscillator with dry friction is investigated. For a one-degree-of-freedom model of the system, analytical solutions are found in separate regions of state space. These are then used to perform a perturbation analysis around a grazing trajectory. Through the analysis, a condition on the parameters of the system is derived, which assures a continuous grazing bifurcation. It is also shown that the result has bearing on the dynamic response of a two-degree-of-freedom model of the system. A low-cost active control strategy for a class of impact oscillators is proposed in Paper B. The idea of the control method is to introduce small adjustments in the position of the impact surface, at discrete moments in time, to assure a continuous bifurcation. A proof is given for what control parameters assures the stabilization. In Paper C, the proposed low-cost control method is implemented in a quarter-car model of a vehicle suspension, in order to minimize impact velocities with the bumpstop in case of high amplitude excitation. It is shown that the control method is effective for harmonic road excitation. / QC 20101118
216

Attitude control on manifolds via optimization and contractions with automatic gain tuning

Vang, Bee 27 September 2021 (has links)
The attitude (or orientation) of an object is often crucial in its ability to perform a task, whether the task is driving a car, flying an aircraft, or focusing a satellite. In traditional control approaches, the attitude is often parameterized by Euler angles or unit quaternions which exhibit problems such as gimbal lock or ambiguity in representation, respectively. These complications prevent the controllers from achieving global stability and worse they may cause real physical harm due to unexpected large motions. More recent works have achieved global stability and avoided these system failures by working directly on the configuration manifold, but these approaches are generally complex or lack automatic, user-friendly ways to tune them. The goal of this dissertation is to develop simple geometric attitude controllers that are globally, exponentially stable and can be automatically tuned. By simple, we mean that the controllers are computationally efficient for real time implementation on embedded computers and the tuning parameters have geometric interpretations. These properties make the controllers user friendly and practical for real hardware implementation even on fast dynamical systems. Furthermore, we aim to obtain an automatic tuning procedure that ensures convergence, and can also quantify and optimize performance guarantees. We achieve our goal through four major contributions. The first is a substantial generalization on the theory of classical Riemannian metrics for tangent bundles which provides the ability to compare and combine attitude and velocity terms in the stability analysis, allowing us to consider a larger set of feasible controller gains. The second contribution is a framework to study the stability of attitude systems on manifolds and to automatically tune the controller gains by combining Riemannian geometry, contraction theory, and offline optimization. The third contribution is the development of a globally, exponentially stable attitude controller. This controller overcomes the topological limitation that prevents continuous, time-invariant controllers from achieving global stability by using a time-varying intermediate reference trajectory. The fourth contribution is the improvement of the proposed controllers by way of point-wise-in-time quadratic programming.
217

Studies on sparse optimal control and passivity-based control for nonlinear mechanical systems / 非線形機械系を対象としたスパース最適制御と受動性に基づく制御に関する研究

Hamada, Kiyoshi 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23887号 / 工博第4974号 / 新制||工||1777(附属図書館) / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 藤本 健治, 教授 泉田 啓, 教授 大塚 敏之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
218

Predictive Control for Linear and Nonlinear Systems Subject to Exogenous Disturbances

Parry, Adam Christopher 20 December 2022 (has links)
No description available.
219

Numerical Simulations of the Aeroelastic Response of an Actively Controlled Flexible Wing

Hall, Benjamin D. 23 July 1999 (has links)
A numerical simulation for evaluating methods of predicting and controlling the response of an elastic wing in an airstream is discussed. The technique employed interactively and simultaneously solves for the response in the time domain by considering the air, wing, and controller as elements of a single dynamical system. The method is very modular, allowing independent modifications to the aerodynamic, structural, or control subsystems and it is not restricted to periodic motions or simple geometries. To illustrate the technique, we use a High Altitude, Long Endurance aircraft wing. The wing is modeled structurally as a linear Euler-Bernoulli beam that includes dynamic coupling between the bending and torsional oscillations. The governing equations of motion are derived and extended to allow for rigid-body motions of the wing. The exact solution to the unforced linear problem is discussed as well as a Galerkin and finite-element approximations. The finite-element discretization is developed and used for the simulations. A general, nonlinear, unsteady vortex-lattice method, which is capable of simulating arbitrary subsonic maneuvers of the wing and accounts for the history of the motion, is employed to model the flow around the wing and provide the aerodynamic loads. Two methods of incorporating gusts in the aerodynamic model are also discussed. Control of the wing is effected via a distributed torque actuator embedded in the wing and two strategies for actuating the wing are described: a classical linear proportional integral strategy and a novel nonlinear feedback strategy based on the phenomenon of saturation that may exist in nonlinear systems with two-to-one internal resonances. Both control strategies can suppress the flutter oscillations of the wing, but the nonlinear controller must be actively tuned to be effective; gust control proved to be more difficult. / Master of Science
220

Hierarchical Control of Constrained Multi-Agent Legged Locomotion: A Data-Driven Approach

Fawcett, Randall Tyler 17 July 2023 (has links)
The aim of this dissertation is to systematically construct a hierarchical framework that allows for robust multi-agent collaborative legged locomotion. More specifically, this work provides a detailed derivation of a torque controller that is theoretically justifiable in the context of Hybrid Zero Dynamics at the lowest level of control to produce highly robust locomotion, even when subject to uncertainty. The torque controller is based on virtual constraints and partial feedback linearization and is cast into the form of a strictly convex quadratic program. This partial feedback linearization is then relaxed through the use of a defect variable, where said defect variable is allowed only to change in a manner that is consistent with rapidly exponentially stable output dynamics through the use of a Control Lyapunov Function. The torque controller is validated in both simulation and on hardware to demonstrate the efficacy of the approach. In particular, the robot is subject to payload and push disturbances and is still able to remain stable. Furthermore, the continuity of the torque controller, in addition to robustness analysis of the periodic orbit, is also provided. At the next level of control, we consider emulating the Single Rigid Body model through the use of Behavioral Systems Theory, resulting in a data-driven model that adequately describes a quadruped at the reduced-order level. Still, due to the complexity and a considerable number of variables in the problem, the model further undergoes a $2$-norm approximation, resulting in a model that is computationally efficient enough to be used in a real-time manner for trajectory planning. In order to test the method rigorously, we consider a series of experiments to examine how the planner works when using different gait parameters than that which was used during data collection. Furthermore, the planner is compared to the traditional Single Rigid Body model to test its efficacy for reference tracking. This data-driven model is then extended to the multi-agent case, where each agent is rigidly holonomically constrained to one another. In this case, the model is used in a distributed manner using a one-step communication delay such that the coupling between agents can be adequately considered while spreading the computational demand. The trajectory planner is evaluated through various hardware experiments with three agents, and simulations are also used to display the scalability of the approach by considering five robots. Finally, this dissertation examines how traditional reduced-order models can be used in tandem with data-based models to reap the benefits of both methods. More specifically, an interconnected Single Rigid Body model is considered, where the interaction forces are described via a data-driven model. Simulations are provided to display the efficacy of this approach at the reduced order level and show that the interaction forces can be reduced by considering them in the trajectory planner. As in the previous cases, this is followed by experimental evaluation subject to external forces and different terrains. / Doctor of Philosophy / The goal of this dissertation is to create a layered control scheme for teams of quadrupeds that results in stable and robust locomotion, including a high-level trajectory planner and a low-level controller. More specifically, this work outlines an optimal torque-based whole-body controller that operates at the joint level to track desired trajectories. These trajectories are obtained by a high-level trajectory planner, which utilizes a data-driven predictive controller to create an optimal trajectory without explicitly requiring knowledge of a model. The hierarchical control scheme is then extended to consider collaborative locomotion. Namely, this work considers teams of quadrupeds that are rigidly connected to one another such that there is no relative motion between them. There are potentially large interaction forces that are applied between the robots that cannot be measured, which can result in instability. Furthermore, the models used to describe the interconnected system are prohibitively complex when being used for trajectory planning. For this reason, the data-driven model considered for a single robot is extended to create a centralized model that encapsulates not only the motion of a single robot but also its connection constraints. The resulting model is very large, making it difficult to use in a real-time manner. Therefore, this work outlines how to distribute the model such that each robot can locally plan for its own motion while also considering the coupling between them. Finally, this work provides one additional extension that combines a traditional physics-based model with a data-driven model to capitalize on the strengths of each. In particular, a physics-based model is considered as a baseline, while a data-driven model is used to describe the interaction forces between robots. In using this final extension, both improved solve times and smoother locomotion are achieved. Each of the aforementioned methods is tested thoroughly through both simulations and experiments.

Page generated in 0.0525 seconds