• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 2
  • Tagged with
  • 45
  • 24
  • 15
  • 15
  • 14
  • 12
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Benefits of Pharmacometric Model-Based Design and Analysis of Clinical Trials

Karlsson, Kristin E January 2010 (has links)
Quantitative pharmacokinetic-pharmacodynamic and disease progression models are the core of the science of pharmacometrics which has been identified as one of the strategies that can make drug development more effective. To adequately develop and utilize these models one needs to carefully consider the nature of the data, choice of appropriate estimation methods, model evaluation strategies, and, most importantly, the intended use of the model. The general aim of this thesis was to investigate how the use of pharmacometric models can improve the design and analysis of clinical trials within drug development. The development of pharmacometric models for clinical assessment scales in stroke and graded severity events, in this thesis, show the benefit of describing data as close to its true nature as possible, as it increases the predictive abilities and allows for mechanistic interpretations of the models. Performance of three estimation methods implemented in the mixed-effects modeling software NONMEM; 1) Laplace, 2) SAEM, and 3) Importance sampling, applied when modeling repeated time-to-event data, was investigated. The two latter methods are to be preferred if less than approximately half of the individuals experience events. In addition, predictive performance of two validation procedures, internal and external validation, was explored, with internal validation being preferred in most cases. Model-based analysis was compared to conventional methods by the use of clinical trial simulations and the power to detect a drug effect was improved with a pharmacometric design and analysis. Throughout this thesis several examples have shown the possibility of significantly reducing sample sizes in clinical trials with a pharmacometric model-based analysis. This approach will reduce time and costs spent in the development of new drug therapies, but foremost reduce the number of healthy volunteers and patients exposed to experimental drugs.
42

Model-Based Optimization of Clinical Trial Designs

Vong, Camille January 2014 (has links)
General attrition rates in drug development pipeline have been recognized as a necessity to shift gears towards new methodologies that allow earlier and correct decisions, and the optimal use of all information accrued throughout the process. The quantitative science of pharmacometrics using pharmacokinetic-pharmacodynamic models was identified as one of the strategies core to this renaissance. Coupled with Optimal Design (OD), they constitute together an attractive toolkit to usher more rapidly and successfully new agents to marketing approval. The general aim of this thesis was to investigate how the use of novel pharmacometric methodologies can improve the design and analysis of clinical trials within drug development. The implementation of a Monte-Carlo Mapped power method permitted to rapidly generate multiple hypotheses and to adequately compute the corresponding sample size within 1% of the time usually necessary in more traditional model-based power assessment. Allowing statistical inference across all data available and the integration of mechanistic interpretation of the models, the performance of this new methodology in proof-of-concept and dose-finding trials highlighted the possibility to reduce drastically the number of healthy volunteers and patients exposed to experimental drugs. This thesis furthermore addressed the benefits of OD in planning trials with bio analytical limits and toxicity constraints, through the development of novel optimality criteria that foremost pinpoint information and safety aspects. The use of these methodologies showed better estimation properties and robustness for the ensuing data analysis and reduced the number of patients exposed to severe toxicity by 7-fold.  Finally, predictive tools for maximum tolerated dose selection in Phase I oncology trials were explored for a combination therapy characterized by main dose-limiting hematological toxicity. In this example, Bayesian and model-based approaches provided the incentive to a paradigm change away from the traditional rule-based “3+3” design algorithm. Throughout this thesis several examples have shown the possibility of streamlining clinical trials with more model-based design and analysis supports. Ultimately, efficient use of the data can elevate the probability of a successful trial and increase paramount ethical conduct.
43

Pharmacometric Methods and Novel Models for Discrete Data

Plan, Elodie L January 2011 (has links)
Pharmacodynamic processes and disease progression are increasingly characterized with pharmacometric models. However, modelling options for discrete-type responses remain limited, although these response variables are commonly encountered clinical endpoints. Types of data defined as discrete data are generally ordinal, e.g. symptom severity, count, i.e. event frequency, and time-to-event, i.e. event occurrence. Underlying assumptions accompanying discrete data models need investigation and possibly adaptations in order to expand their use. Moreover, because these models are highly non-linear, estimation with linearization-based maximum likelihood methods may be biased. The aim of this thesis was to explore pharmacometric methods and novel models for discrete data through (i) the investigation of benefits of treating discrete data with different modelling approaches, (ii) evaluations of the performance of several estimation methods for discrete models, and (iii) the development of novel models for the handling of complex discrete data recorded during (pre-)clinical studies. A simulation study indicated that approaches such as a truncated Poisson model and a logit-transformed continuous model were adequate for treating ordinal data ranked on a 0-10 scale. Features that handled serial correlation and underdispersion were developed for the models to subsequently fit real pain scores. The performance of nine estimation methods was studied for dose-response continuous models. Other types of serially correlated count models were studied for the analysis of overdispersed data represented by the number of epilepsy seizures per day. For these types of models, the commonly used Laplace estimation method presented a bias, whereas the adaptive Gaussian quadrature method did not. Count models were also compared to repeated time-to-event models when the exact time of gastroesophageal symptom occurrence was known. Two new model structures handling repeated time-to-categorical events, i.e. events with an ordinal severity aspect, were introduced. Laplace and two expectation-maximisation estimation methods were found to be performing well for frequent repeated time-to-event models. In conclusion, this thesis presents approaches, estimation methods, and diagnostics adapted for treating discrete data. Novel models and diagnostics were developed when lacking and applied to biological observations.
44

Optimized design recommendation for first pharmacokinetic in vivo experiments for new tuberculosis drugs using pharmacometrics modelling and simulation

Leding, Albin January 2021 (has links)
Tuberculosis, the leading cause of death by a single infection disease caused by bacteria, requires long treatments and the bacteria are prone to develop drug resistance. Therefore, new efficient treatment regiments needs developing, which requires new tools for drug development. A major reason for discontinuance of a drug under development is undesired pharmacokinetic properties. Therefore, it is important to have early information of this, preferably the first time the drug is tested in animals. The first in vivo pharmacokinetic experiment is often done in mice and the only information present at this stage are often in vitro values and physicochemical properties. Physiological-based pharmacokinetic modelling can be used to extrapolate from in vitro to in vivo values. From this, the first in vivo pharmacokinetic experiment can be designed, often with the goal of reducing the amount of mice. This goal is one of the three R.s and it is called Reduction. To explore the Reduction of an experiment population pharmacokinetic modelling can be utilized via exploration of the imprecision, bias and probability of an informative experiment to evaluate if a design meets the goal of Reduction. In this report a recommendation of the first in vivo pharmacokinetic experiment is presented. This is based on in vitro values and physicochemical properties that are common in anti-tuberculosis drugs. If the probability of an informative experiment is critical, a terminal sampling of 40 mice is recommended. If imprecision and bias are necessary, zipper sampling of 10 mice is recommended.
45

Individualization of fixed-dose combination regimens : Methodology and application to pediatric tuberculosis / Individualisering av design och dosering av kombinationstabletter : Metodologi och applicering inom pediatrisk tuberkulos

Yngman, Gunnar January 2015 (has links)
Introduction: No Fixed-Dose Combination (FDC) formulations currently exist for pediatric tuberculosis (TB) treatment. Earlier work implemented, in the software NONMEM, a rational method for optimizing design and individualization of pediatric anti-TB FDC formulations based on patient body weight, but issues with parameter estimation, dosage strata heterogeneity and representative pharmacokinetics remained. Aim: To further develop the rational model-based methodology aiding the selection of appropriate FDC formulation designs and dosage regimens, in pediatric TB treatment. Materials and Methods: Optimization of the method with respect to the estimation of body weight breakpoints was sought. Heterogeneity of dosage groups with respect to treatment efficiency was sought to be improved. Recently published pediatric pharmacokinetic parameters were implemented and the model translated to MATLAB, where also the performance was evaluated by stochastic estimation and graphical visualization. Results: A logistic function was found better suited as an approximation of breakpoints. None of the estimation methods implemented in NONMEM were more suitable than the originally used FO method. Homogenization of dosage group treatment efficiency could not be solved. MATLAB translation was successful but required stochastic estimations and highlighted high densities of local minima. Representative pharmacokinetics were successfully implemented. Conclusions: NONMEM was found suboptimal for the task due to problems with discontinuities and heterogeneity, but a stepwise method with representative pharmacokinetics were successfully implemented. MATLAB showed more promise in the search for a method also addressing the heterogeneity issue.

Page generated in 0.0212 seconds