Spelling suggestions: "subject:"NP complete"" "subject:"NP komplete""
41 |
Efficient checking of polynomials and proofs and the hardness of approximation problems /Sudan, Madhu. January 1900 (has links)
Based on the author's Ph. D. thesis, University of California, Berkeley, 1993. / Includes bibliographical references (p. [73]-78) and index. Also issued online.
|
42 |
Spanneröar och spannervägarNilsson, Mikael January 2009 (has links)
In this Master Thesis the possibility to efficiently divide a graph into spanner islands is examined. Spanner islands are islands of the graph that fulfill the spanner condition, that the distance between two nodes via the edges in the graph cannot be too far, regulated by the stretch constant, compared to the Euclidian distance between them. In the resulting division the least number of nodes connecting to other islands is sought-after. Different heuristics are evaluated with the conclusion that for dense graphs a heuristic using MAX-FLOW to divide problematic nodes gives the best result whereas for sparse graphs a heuristic using the single-link clustering method performs best. The problem of finding a spanner path, a path fulfilling the spanner condition, between two nodes is also investigated. The problem is proven to be NP-complete for a graph of size n if the spanner constant is greater than n^(1+1/k)*k^0.5 for some integer k. An algorithm with complexity O(2^(0.822n)) is given. A special type of graph where all the nodes are located on integer locations along the real line is investigated. An algorithm to solve this problem is presented with a complexity of O(2^((c*log n)^2))), where c is a constant depending only on the spanner constant. For instance, the complexity O(2^((5.32*log n)^2))) can be reached for stretch 1.5. / I det här magisterarbetet undersöks om det är möjligt att på ett effektivt sätt dela upp en graf i spanneröar, dvs. öar som uppfyller spanneregenskapen som består i att avståndet mellan två noder via grafens bågar inte får vara för stort i förhållande till det euklidiska avståndet mellan noderna. Att hitta en uppdelning som skapar så få kontaktpunkter mellan öarna som möjligt eftersöks. Ett antal heuristiker testas och utvärderas med resultatet att en heuristik som använder sig av MAX-FLOW för att dela upp noder som bryter mot spannervillkoret presterar bäst för täta grafer medan en heuristik av typ single-link clustering presterar bäst för glesa grafer. I arbetet visas att problemet att finna en spannerväg, en väg där noderna som passeras uppfyller spannervillkoret, mellan två noder i en graf av storlek n är NP-komplett om spannerkonstanten är större än n^(1+1/k)*k^0.5 för något heltal k. En algoritm för att hitta spannervägar med komplexiteten O(2^(0.822n)) presenteras. Ett specialproblem där grafen ligger längs tallinjen och bara har noder på heltalspunkter studeras slutligen och här konstrueras en algoritm med komplexiteten O(2^((c*log n)^2))) där c är en konstant som beror på spannerkonstanten. Till exempel nås O(2^((5.32*log n)^2))) för stretch 1.5.
|
43 |
Hitting and Piercing Geometric Objects Induced by a Point SetRajgopal, Ninad January 2014 (has links) (PDF)
No description available.
|
44 |
Evoluční algoritmy v úloze booleovské splnitelnosti / Evolutionary Algorithms in the Task of Boolean SatisfiabilitySerédi, Silvester January 2013 (has links)
The goal of this Master's Thesis is finding a SAT solving heuristic by the application of an evolutionary algorithm. This thesis surveys various approaches used in SAT solving and some variants of evolutionary algorithms that are relevant to this topic. Afterwards the implementation of a linear genetic programming system that searches for a suitable heuristic for SAT problem instances is described, together with the implementation of a custom SAT solver which expoloits the output of the genetic program. Finally, the achieved results are summarized.
|
45 |
Genetické algoritmy / Genetic AlgorithmsMiček, David January 2009 (has links)
This thesis presents description of Genetic algorithm. The description begins with theory of complexity and following basic theory of genetic algorithm. Next part explains the principle of all three tasks – travelling salesman problem, knapsack problem and evolution of algorithm for five-in-a-row. The main focus was on developing the algorithm for five-in-a-row. The results were tested with other similar algorithms from internet. In case of travelling salesman problem and knapsack problem, the results were compared with gradient optimization methods.
|
46 |
The complexity of unavoidable word patternsSauer, Paul Van der Merwe 12 1900 (has links)
Bibliography: pages 192-195 / The avoidability, or unavoidability of patterns in words over finite alphabets has
been studied extensively. The word α over a finite set A is said to be unavoidable
for an infinite set B+ of nonempty words over a finite set B if, for all but finitely
many elements w of B+, there exists a semigroup morphism φ ∶ A+ → B+ such that
φ(α) is a factor of w.
In this treatise, we start by presenting a historical background of results that are
related to unavoidability. We present and discuss the most important theorems
surrounding unavoidability in detail.
We present various complexity-related properties of unavoidable words. For words
that are unavoidable, we provide a constructive upper bound to the lengths of
words that avoid them. In particular, for a pattern α of length n over an alphabet
of size r, we give a concrete function N(n, r) such that no word of length N(n, r)
over the alphabet of size r avoids α.
A natural subsequent question is how many unavoidable words there are. We show
that the fraction of words that are unavoidable drops exponentially fast in the
length of the word. This allows us to calculate an upper bound on the number of
unavoidable patterns for any given finite alphabet.
Subsequently, we investigate computational aspects of unavoidable words. In
particular, we exhibit concrete algorithms for determining whether a word is
unavoidable. We also prove results on the computational complexity of the problem
of determining whether a given word is unavoidable. Specifically, the
NP-completeness of the aforementioned problem is established. / Decision Sciences / D. Phil. (Operations Research)
|
47 |
Optimizing the imbalances in a graph / Optimiser les déséquilibres dans un grapheGlorieux, Antoine 19 June 2017 (has links)
Le déséquilibre d'un sommet dans un graphe orienté est la valeur absolue de la différence entre son degré sortant et son degré entrant. Nous étudions le problème de trouver une orientation des arêtes du graphe telle que l'image du vecteur dont les composantes sont les déséquilibres des sommets par une fonction objectif f est maximisée. Le premier cas considéré est le problème de maximiser le minimum des déséquilibres sur toutes les orientations possibles. Nous caractérisons les graphes dont la valeur objective optimale est nulle. Ensuite nous donnons plusieurs résultats concernant la complexité du problème. Enfin, nous introduisons différentes formulations du problème et présentons quelques résultats numériques. Par la suite, nous montrons que le cas f=1/2 | |·| |₁ mène au célèbre problème de la coupe de cardinalité maximale. Nous introduisons de nouvelles formulations ainsi qu'un nouveau majorant qui domine celui de Goemans et Williamson. Des résultats théoriques et numériques concernant la performance des approches sont présentés. Pour finir, dans le but de renforcer certaines des formulations des problèmes étudiés, nous étudions une famille de polyèdres spécifique consistant en l'enveloppe convexe des matrices d'affectation 0/1 (où chaque colonne contient exactement une composante égale à 1) annexée avec l'indice de leur ligne non-identiquement nulle la plus basse. Nous donnons une description complète de ce polytope ainsi que certaines de ses variantes qui apparaissent naturellement dans le contexte de divers problèmes d'optimisation combinatoire. Nous montrons également que résoudre un programme linéaire sur un tel polytope peut s'effectuer en temps polynomial / The imbalance of a vertex in a directed graph is the absolute value of the difference between its outdegree and indegree. In this thesis we study the problem of orienting the edges of a graph in such a way that the image of the vector which components are the imbalances of the vertices of the graph under an objective function f is maximized. The first case considered is the problem of maximizing the minimum imbalance of all the vertices over all the possible orientations of the input graph. We first characterize graphs for which the optimal objective value is zero. Next we give several results concerning the computational complexity of the problem. Finally, we deal with several mixed integer programming formulations for this problem and present some numerical experiments. Next, we show that the case for f=1/2 | |·| |₁ leads to the famous unweighted maximum cut problem. We introduce some new formulations along with a new bound shown to be tighter than Michel Goemans & David Williamson's. Theoretical and computational results regarding bounds quality and performance are also reported. Finally, in order to strengthen some formulations of the studied problems, we study a specific class of polytopes. Consider the polytope consisting in the convex hull of the 0/1 assignment matrices where each column contains exactly one coefficient equal to 1 appended with their index of the lowest row that is not identically equal to the zero row. We give a full description of this polytope and some of its variants which naturally appear in the context of several combinatorial optimization problems. We also show that linear optimization over those polytopes can be done in polynomial time
|
48 |
A SIMD Approach To Large-scale Real-time System Air Traffic Control Using Associative Processor and Consequences For Parallel ComputingYuan, Man 01 October 2012 (has links)
No description available.
|
49 |
Evoluční algoritmy při řešení problému obchodního cestujícího / Evolutionary Algorithms for the Solution of Travelling Salesman ProblemJurčík, Lukáš January 2014 (has links)
This diploma thesis deals with evolutionary algorithms used for travelling salesman problem (TSP). In the first section, there are theoretical foundations of a graph theory and computational complexity theory. Next section contains a description of chosen optimization algorithms. The aim of the diploma thesis is to implement an application that solve TSP using evolutionary algorithms.
|
50 |
Srovnání algoritmů při řešení problému obchodního cestujícího / The Comparison of the Algorithms for the Solution of Travel Sales ProblemKopřiva, Jan January 2009 (has links)
The Master Thesis deals with logistic module innovation of information system ERP. The principle of innovation is based on implementation of heuristic algorithms which solve Travel Salesman Problems (TSP). The software MATLAB is used for analysis and tests of these algorithms. The goal of Master Thesis is the comparison of selections algorithm, which are suitable for economic purposes (accuracy of solution, speed of calculation and memory demands).
|
Page generated in 0.0325 seconds