Spelling suggestions: "subject:"NP complete"" "subject:"NP komplete""
31 |
Análise da distribuição do número de operações de resolvedores SAT / Distribution\'s analysis of operations\'s number of SAT solversReis, Poliana Magalhães 28 February 2012 (has links)
No estudo da complexidade de problemas computacionais destacam-se duas classes conhecidas como P e NP. A questao P=NP e um dos maiores problemas nao resolvidos em Ciencia da Compu- tacao teorica e Matematica contemporanea. O problema SAT foi o primeiro problema reconhecido como NP-completo e consiste em verificar se uma determinada formula da logica proposicional clas- sica e ou nao satisfazivel. As implementacoes de algoritmos para resolver problemas SAT sao conhe- cidas como resolvedores SAT (SAT Solvers). Existem diversas aplicacoes em Ciencia da Computacao que podem ser realizadas com SAT Solvers e com outros resolvedores de problemas NP-completos que podem ser reduzidos ao SAT como por exemplo problemas de coloracao de grafos, problemas de agendamento e problemas de planejamento. Dentre os mais eficientes algoritmos para resolvedores de SAT estao Sato, Grasp, Chaff, MiniSat e Berkmin. O Algoritmo Chaff e baseado no Algoritmo DPLL o qual existe a mais de 40 anos e e a estrategia mais utilizada para os Sat Solvers. Essa dissertacao apresenta um estudo aprofundado do comportamento do zChaff (uma implementacao muito eficiente do Chaff) para saber o que esperar de suas execucoes em geral . / In the study of computational complexity stand out two classes known as P and NP. The question P = NP is one of the greatest unsolved problems in theoretical computer science and contemporary mathematics. The SAT problem was first problem recognized as NP-complete and consists to check whether a certain formula of classical propositional logic is satisfiable or not. The implementations of algorithms to solve SAT problems are known as SAT solvers. There are several applications in computer science that can be performed with SAT solvers and other solvers NP- complete problems can be reduced to SAT problems such as graph coloring, scheduling problems and planning problems. Among the most efficient algorithms for SAT solvers are Sato, Grasp, Chaf, MiniSat and Berkmin. The Chaff algorithm is based on the DPLL algorithm which there is more than 40 years and is the most used strategy for Sat Solvers. This dissertation presents a detailed study of the behavior of zChaff (a very efficient implementation of the Chaff) to know what to expect from their performance in general.
|
32 |
The Maximum Clique Problem: Algorithms, Applications, and ImplementationsEblen, John David 01 August 2010 (has links)
Computationally hard problems are routinely encountered during the course of solving practical problems. This is commonly dealt with by settling for less than optimal solutions, through the use of heuristics or approximation algorithms. This dissertation examines the alternate possibility of solving such problems exactly, through a detailed study of one particular problem, the maximum clique problem. It discusses algorithms, implementations, and the application of maximum clique results to real-world problems. First, the theoretical roots of the algorithmic method employed are discussed. Then a practical approach is described, which separates out important algorithmic decisions so that the algorithm can be easily tuned for different types of input data. This general and modifiable approach is also meant as a tool for research so that different strategies can easily be tried for different situations. Next, a specific implementation is described. The program is tuned, by use of experiments, to work best for two different graph types, real-world biological data and a suite of synthetic graphs. A parallel implementation is then briefly discussed and tested. After considering implementation, an example of applying these clique-finding tools to a specific case of real-world biological data is presented. Results are analyzed using both statistical and biological metrics. Then the development of practical algorithms based on clique-finding tools is explored in greater detail. New algorithms are introduced and preliminary experiments are performed. Next, some relaxations of clique are discussed along with the possibility of developing new practical algorithms from these variations. Finally, conclusions and future research directions are given.
|
33 |
In pursuit of NP-hard combinatorial optimization problemsOno, Satoshi. January 2009 (has links)
Thesis (Ph. D.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Computer Science, 2009. / Includes bibliographical references.
|
34 |
Sobre convexidade em prismas complementares / Results on convexity complementary prismsDuarte, Márcio Antônio 10 April 2015 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2015-10-27T14:37:06Z
No. of bitstreams: 2
Tese - Marcio Antonio Duarte - 2015.pdf: 457015 bytes, checksum: 1f57686628e44a0cebc1fee7aaf0bcfc (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-10-29T10:04:41Z (GMT) No. of bitstreams: 2
Tese - Marcio Antonio Duarte - 2015.pdf: 457015 bytes, checksum: 1f57686628e44a0cebc1fee7aaf0bcfc (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-10-29T10:04:41Z (GMT). No. of bitstreams: 2
Tese - Marcio Antonio Duarte - 2015.pdf: 457015 bytes, checksum: 1f57686628e44a0cebc1fee7aaf0bcfc (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2015-04-10 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work, we present some related results, especially the properties algoritimics and
of complexity of a product of graphs called complementary prism. Answering some
questions left open by Haynes, Slater and van der Merwe, we show that the problem
of click, independent set and k-dominant set is NP-Complete for complementary prisms
in general. Furthermore, we show NP-completeness results regarding the calculation of
some parameters of the P3-convexity for the complementary prism graphs in general,
as the P3-geodetic number, P3-hull number and P3-Carathéodory number. We show that
the calculation of P3-geodetic number is NP-complete for complementary prism graphs
in general. As for the P3-hull number, we can show that the same can be efficiently
computed in polynomial time. For the P3-Carathéodory number, we show that it is NPcomplete
complementary to prisms bipartite graphs, but for trees, this may be calculated
in polynomial time and, for class of cografos, calculating the P3-Carathéodory number of
complementary prism of these is 3. We also found a relationship between the cardinality
Carathéodory set of a graph and a any Carathéodory set of complementary prism.
Finally, we established an upper limit calculation the parameters: geodetic number, hull
number and Carathéodory number to operations complementary prism of path, cycles and
complete graphs considering the convexities P3 and geodesic. / Neste trabalho, apresentamos alguns resultados relacionados, principalmente às propriedades
algorítmicas e de complexidade de um produto de grafos chamado prisma complementar.
Respondendo algumas questões deixadas em aberto por Haynes, Slater e van
der Merwe, mostramos o problema de clique, conjunto independente e conjunto com kdominantes
é NP-Completo para prismas complementares em geral. Além disso, mostramos
resultados de NP-completude em relação ao cálculo de alguns parâmetros da convexidade
P3 para o prisma complementar de grafos em geral, como o número P3, número
envoltório P3 e número de Carathéodory. Mostramos que o cálculo do número P3 é NPcompleto
para o prisma complementar de grafos em geral. Já para o número envoltório
P3, mostramos que o mesmo pode ser calculado de forma eficiente em tempo polinomial.
Para o número de Carathéodory, mostramos que é NP-completo para os prismas complementares
de grafos bipartidos, mas que para árvores, este pode ser calculado em tempo
polinomial e ainda, para classe dos cografos, o cálculo do número de Carathéodory do
prisma complementar desses é 3. Encontramos também, uma relação entre a cardinalidade
de um conjunto de Carathéodory de um grafo qualquer e um conjunto de Carathéodory
do seu prisma complementar. Por fim, estabelecemos um limite superior do cálculo
dos parâmetros: número geodésico, número envoltório e número de Carathéodory para
operações prisma complementar de grafos caminho, ciclos e completos considerando as
convexidades P3 e geodésica.
|
35 |
Análise da distribuição do número de operações de resolvedores SAT / Distribution\'s analysis of operations\'s number of SAT solversPoliana Magalhães Reis 28 February 2012 (has links)
No estudo da complexidade de problemas computacionais destacam-se duas classes conhecidas como P e NP. A questao P=NP e um dos maiores problemas nao resolvidos em Ciencia da Compu- tacao teorica e Matematica contemporanea. O problema SAT foi o primeiro problema reconhecido como NP-completo e consiste em verificar se uma determinada formula da logica proposicional clas- sica e ou nao satisfazivel. As implementacoes de algoritmos para resolver problemas SAT sao conhe- cidas como resolvedores SAT (SAT Solvers). Existem diversas aplicacoes em Ciencia da Computacao que podem ser realizadas com SAT Solvers e com outros resolvedores de problemas NP-completos que podem ser reduzidos ao SAT como por exemplo problemas de coloracao de grafos, problemas de agendamento e problemas de planejamento. Dentre os mais eficientes algoritmos para resolvedores de SAT estao Sato, Grasp, Chaff, MiniSat e Berkmin. O Algoritmo Chaff e baseado no Algoritmo DPLL o qual existe a mais de 40 anos e e a estrategia mais utilizada para os Sat Solvers. Essa dissertacao apresenta um estudo aprofundado do comportamento do zChaff (uma implementacao muito eficiente do Chaff) para saber o que esperar de suas execucoes em geral . / In the study of computational complexity stand out two classes known as P and NP. The question P = NP is one of the greatest unsolved problems in theoretical computer science and contemporary mathematics. The SAT problem was first problem recognized as NP-complete and consists to check whether a certain formula of classical propositional logic is satisfiable or not. The implementations of algorithms to solve SAT problems are known as SAT solvers. There are several applications in computer science that can be performed with SAT solvers and other solvers NP- complete problems can be reduced to SAT problems such as graph coloring, scheduling problems and planning problems. Among the most efficient algorithms for SAT solvers are Sato, Grasp, Chaf, MiniSat and Berkmin. The Chaff algorithm is based on the DPLL algorithm which there is more than 40 years and is the most used strategy for Sat Solvers. This dissertation presents a detailed study of the behavior of zChaff (a very efficient implementation of the Chaff) to know what to expect from their performance in general.
|
36 |
Global Secure Sets Of Trees And Grid-like GraphsHo, Yiu Yu 01 January 2011 (has links)
Let G = (V, E) be a graph and let S ⊆ V be a subset of vertices. The set S is a defensive alliance if for all x ∈ S, |N[x] ∩ S| ≥ |N[x] − S|. The concept of defensive alliances was introduced in [KHH04], primarily for the modeling of nations in times of war, where allied nations are in mutual agreement to join forces if any one of them is attacked. For a vertex x in a defensive alliance, the number of neighbors of x inside the alliance, plus the vertex x, is at least the number of neighbors of x outside the alliance. In a graph model, the vertices of a graph represent nations and the edges represent country boundaries. Thus, if the nation corresponding to a vertex x is attacked by its neighbors outside the alliance, the attack can be thwarted by x with the assistance of its neighbors in the alliance. In a different subject matter, [FLG00] applies graph theory to model the world wide web, where vertices represent websites and edges represent links between websites. A web community is a subset of vertices of the web graph, such that every vertex in the community has at least as many neighbors in the set as it has outside. So, a web community C satisfies ∀x ∈ C, |N[x] ∩ C| > |N[x] − C|. These sets are very similar to defensive alliances. They are known as strong defensive alliances in the literature of alliances in graphs. Other areas of application for alliances and related topics include classification, data clustering, ecology, business and social networks. iii Consider the application of modeling nations in times of war introduced in the first paragraph. In a defensive alliance, any attack on a single member of the alliance can be successfully defended. However, as will be demonstrated in Chapter 1, a defensive alliance may not be able to properly defend itself when multiple members are under attack at the same time. The concept of secure sets is introduced in [BDH07] for exactly this purpose. The non-empty set S is a secure set if every subset X ⊆ S, with the assistance of vertices in S, can successfully defend against simultaneous attacks coming from vertices outside of S. The exact definition of simultaneous attacks and how such attacks may be defended will be provided in Chapter 1. In [BDH07], the authors presented an interesting characterization for secure sets which resembles the definition of defensive alliances. A non-empty set S is a secure set if and only if ∀X ⊆ S, |N[X] ∩ S| ≥ |N[X] − S| ([BDH07], Theorem 11). The cardinality of a minimum secure set is the security number of G, denoted s(G). A secure set S is a global secure set if it further satisfies N[S] = V . The cardinality of a minimum global secure set of G is the global security number of G, denoted γs(G). In this work, we present results on secure sets and global secure sets. In particular, we treat the computational complexity of finding the security number of a graph, present algorithms and bounds for the global security numbers of trees, and present the exact values of the global security numbers of paths, cycles and their Cartesian products.
|
37 |
Algorithms for the satisfiability problemRolf, Daniel 22 November 2006 (has links)
Diese Arbeit befasst sich mit Worst-Case-Algorithmen für das Erfüllbarkeitsproblem boolescher Ausdrücke in konjunktiver Normalform. Im Wesentlichen betrachten wir Laufzeitschranken drei verschiedener Algorithmen, zwei für 3-SAT und einen für Unique-k-SAT. Wir entwickeln einen randomisierten Algorithmus, der eine Lösung eines erfüllbaren 3-KNF-Ausdrucks G mit n Variablen mit einer erwarteten Laufzeit von O(1.32793^n) findet. Der Algorithmus basiert auf der Analyse sogenannter Strings, welche Sequenzen von Klauseln der Länge drei sind. Dabei dürfen einerseits nicht aufeinanderfolgende Klauseln keine Variablen und andererseits aufeinanderfolgende Klauseln ein oder zwei Variablen gemeinsam haben. Gibt es wenige Strings, so treffen wir wahrscheinlich bereits während der String-Suche auf eine Lösung von G. 1999 entwarf Schöning einen Algorithmus mit einer Schranke von O(1.3334^n) für 3-SAT. Viele Strings erlauben es, die Laufzeit dieses Algorithmusses zu verbessern. Weiterhin werden wir den PPSZ-Algorithmus für Unique-k-SAT derandomisieren. Der 1998 von Paturi, Pudlak, Saks und Zane vorgestellte PPSZ-Algorithmus hat die besondere Eigenschaft, dass die Lösung eines eindeutig erfüllbaren 3-KNF-Ausdrucks in höchstens O(1.3071^n) erwarteter Laufzeit gefunden wird. Die derandomisierte Variante des Algorithmusses für Unique-k-SAT hat im Wesentlichen die gleiche Laufzeitschranke. Wir erreichen damit die momentan beste deterministische Worst-Case-Schranke für Unique-k-SAT. Zur Derandomisierung wenden wir die "Methode der kleinen Zufallsräume" an. Schließlich verbessern wir die Schranke für den Algorithmus von Iwama und Tamaki. 2003 kombinierten Iwama und Tamaki den PPSZ-Algorithmus mit Schönigs Algorithmus und konnten eine Schranke von O(1.3238^n) bewiesen. Um seinen Beitrag zum kombinierten Algorithmus zu steigern, justieren wir die Schranke des PPSZ-Algorithmusses. Damit erhalten wir die momentan beste randomisierte Worst-Case-Schranke für das 3-SAT-Problem von O(1.32216^n). / This work deals with worst-case algorithms for the satisfiability problem regarding boolean formulas in conjunctive normal form. The main part of this work consists of the analysis of the running time of three different algorithms, two for 3-SAT and one for Unique-k-SAT. We establish a randomized algorithm that finds a satisfying assignment for a satisfiable 3-CNF formula G on n variables in O(1.32793^n) expected running time. The algorithm is based on the analysis of so-called strings, which are sequences of clauses of size three, whereby non-succeeding clauses do not share a variable, and succeeding clauses share one or two variables. If there are not many strings, it is likely that we already encounter a solution of G while searching for strings. In 1999, Schöning proved a bound of O(1.3334^n) for 3-SAT. If there are many strings, we use them to improve the running time of Schöning''s algorithm. Furthermore, we derandomize the PPSZ algorithm for Unique-k-SAT. The PPSZ algorithm presented by Paturi, Pudlak, Saks, and Zane in 1998 has the feature that the solution of a uniquely satisfiable 3-CNF formula can be found in expected running time at most O(1.3071^n). In general, we will obtain a derandomized version of the algorithm for Unique-k-SAT that has essentially the same bound as the randomized version. This settles the currently best known deterministic worst-case bound for the Unique-k-SAT problem. We apply the `Method of Small Sample Spaces'' in order to derandomize the algorithm. Finally, we improve the bound for the algorithm of Iwama and Tamaki to get the currently best known randomized worst-case bound for the 3-SAT problem of O(1.32216^n). In 2003 Iwama and Tamaki combined Schöning''s and the PPSZ algorithm to yield an O(1.3238^n) bound. We tweak the bound for the PPSZ algorithm to get a slightly better contribution to the combined algorithm.
|
38 |
Algorithmes et résultats de complexité pour des problèmes de graphes avec contraintes additionnelles / Algorithms and complexity results for graph problems with additional constraintsCornet, Alexis 05 December 2018 (has links)
Les problèmes de domination (dominant, dominant indépendant, ...) et de couverture (vertex-cover, arbre de Steiner, ...) sont NP-complets. Pour autant, pour la plupart de ces problèmes, il existe toujours une solution constructible en temps polynomial (potentiellement de valeur objective très mauvaise), ou au moins, il est possible de déterminer facilement (en temps polynomial) l'existence ou non d'une solution. Ces problèmes, initialement issus de situations réelles, sont des modélisations simplistes de ces situations. Nous ajoutons donc des contraintes additionnelles modélisant des contraintes pratiques plausibles : les conflits, des paires d'éléments ne pouvant faire simultanément partie d'une solution (modélisant des incompatibilités diverses), la connexité dans un second graphe (les éléments doivent pouvoir communiquer, et le graphe correspondant à ces liens de communication n'est pas forcément le même) et les obligations, des sous-ensembles d'éléments interdépendants devant être ajoutés simultanément à une solution. Notre but ici n'est pas de modéliser un problème réel précis, mais d'étudier la manière dont ces contraintes modifient la complexité des problèmes étudiés. Nous verrons que dans un grand nombre de cas, déterminer l'existence même d'une solution devient difficile, même sans se préoccuper de leur optimisation. Le problème du firefighter modélise des pompiers tentant de contenir un feu se propageant au tour par tour dans un graphe (potentiellement infini). Nous avons étudié ce problème en ajoutant des contraintes sur le déplacement des pompiers (une vitesse de déplacement limitée entre deux tours). Nous verrons que ces contraintes augmentent en général le nombre de pompiers nécessaires mais ne provoquent pas de changements aussi importants que dans les problèmes précédents. / Domination problems (dominating set, independant dominating set, ...) as well as covering problems (vertex-cover, Steiner tree, ...) are NP-complete. However, for most of these problems, it is always possible to construct a (eventually bad) solution in polynomial time, or at least it is possible to determine whether a solution exists. Those problems originally came from industry, but are simplified modelizations of the real life problems. We add additional constraints modeling plausible practical constraints : conflicts which are pairs of elements that cannot apear simultaneously in a solution (to modelize various incompatibilities), connexity in a second graph (elements of the solution must be able to communicate, and the communication links are a second graph), and obligations which are subsets of interdependant vertices which must be added simultaneously in a solution.We don't aim to model a specific real-world problem, but to study how these plausible constraints affect the complexity of the studied problems. We will see that, in many cases, even determining the existence of a solution (regardless of its size) become hard. The firefighter problem models firefighters aiming to contain a fire spreading turn by turn in a (eventually infinite) graph. We studied this problem with the addition of deplacement constraints for the firefighters (a limited moving speed between turns). We will see that, most of the time, this constraint increase the number of firefighters necessary to contain the fire, but does not trigger such major change as constraints studied in the others problems.
|
39 |
Problèmes type "Feedback Set" et comportement dynamique des réseaux de régulation / Feedback Set Problems and Dynamical Behavior in Regulatory NetworksMontalva Medel, Marco 18 August 2011 (has links)
Dans la nature existent de nombreux exemples de systèmes dynamiques complexes: systèmes neuronaux, communautés, écosystèmes, réseaux de régulation génétiques, etc. Ces derniers, en particulier, sont de notre intérêt et sont souvent modélisés par des réseaux booléens. Un réseau booléenne peut être considérée comme un digraphe, où les sommets correspondent à des gènes ou de produits de gènes, tandis que les arcs indiquent les interactions entre eux. Une niveau d'expression des gènes est modélisé par des valeurs binaires, 0 ou 1, indiquant deux états de la transcription, soit activité, soit inactivité, respectivement, et ce niveau change dans le temps selon certains fonction locaux d'activation qui dépend des états d'un ensemble de nœuds (les gènes). L'effet conjoint des fonctions d'activation locale définit une fonction de transition globale: ainsi, le autre élément nécessaire dans la description du modèle est fonction de mise à jour, qui détermine quand chaque nœud doit être mis à jour, et donc, comme les fonctions local se combinent dans une fonction globale (en d'autres termes, il doit décrire les temps relative de les activités régulatoires). Comme un réseau booléen avec n sommets a 2 ^ n états globaux, à partir d'un état de départ, et dans un nombre fini de mises à jour, le réseau atteindra un fixe point ou un cycle limite, appelée attracteurs qui sont souvent associées à des phénotypes distincts (états-cellulaire) définis par les patrons d'activité des gènes. Un réseau de régulation Booléenne (REBN) est un réseau Booléen où chaque interaction entre les éléments de la réseau correspond soit à une interaction positif ou d'une interaction négative. Ainsi, le digraphe interaction associée à une REBN est un digraphe signé où un circuit est appelé positif (négatif) si le nombre de ses arcs négative est pair (impair). Dans ce contexte, il y a diverses études sur l'importance du les circuits positif et négatifs dans le comportement dynamique de différents systèmes en Biologie. En effet le point de départ de cette thèse est basée sur un résultat en disant que le nombre maximal de points fixes d'une REBN dépend d'un ensemble de cardinalité minimale qu'intersecte tous les cycles positifs (également dénommés positive feedback vertex set) du digraphe signé associé. D'autre part, un autre aspect important de circuits est leur rôle dans la robustesse des réseaux booléens par rapport différents types de mise à jour déterministe. Dans ce contexte, un élément clé mathématique est le update digraphe qui est un digraphe étiqueté associé à la réseau dont les étiquettes sur les arcs sont définies comme suit: un arc (u,v) est dit être positif si l'état de sommet u est mis à jour en même temps ou après que celle de v, et négative sinon. Ainsi, un cycle dans le digraphe étiqueté est dite positive (négative) si tous ses arcs sont positifs (négatifs). Cela laisse en évidence que parler de "positif" et "négatif" a des significations différentes selon le contex: digraphes signé ou digraphes étiquetés. Ainsi, nous allons voir dans cette thèse, les relations entre les feedback sets et la dynamique des réseaux Booléens à travers l'étude analytique de ces deux fondamentaux objets mathématiques: le digraphe (de connexion) signé et l'update digraphe. / In the nature there exist numerous examples of complex dynamical systems: neural systems, communities, ecosystems, genetic regulatory networks, etc. These latest, in particular are of our interest and are often modeled by Boolean networks. A Boolean network can be viewed as a digraph, where the vertices correspond to genes or gene products, while the arcs denote interactions among them. A gene expression level is modeled by binary values, 0 or 1, indicating two transcriptional states, either active or inactive, respectively, and this level changes in time according to some local activation function which depends on the states of a set of nodes (genes). The joint effect of the local activation functions defines a global transition function; thus, the other element required in the description of the model is an update schedule which determines when each node has to be updated, and hence, how the local functions combine into the global one (in other words, it must describe the relative timings of the regulatory activities). Since a Boolean network with n vertices has 2^n global states, from a starting state, within a finite number of udpates, the network will reach a fixed point or a limit cycle, called attractors that are often associated to distinct phenotypes (cellular states) defined by patterns of gene activity. A regulatory Boolean network (REBN) is a Boolean network where each interaction between the elements of the network corresponds either to a positive or to a negative interaction. Thus, the interaction digraph associated to a REBN is a signed digraph where a circuit is called positive (negative) if the number of its negative arcs is even (odd). In this context, there are diverse studies about the importance of the positive and negative circuits in the dynamical behavior of different systems in Biology. Indeed the starting point of this Thesis is based on a result saying that the maximum number of fixed points of a REBN depends on a minimum cardinality vertex set whose elements intersects to all the positive cycles (also named a positive feedback vertex set) of the associated signed digraph. On the other hand, another important aspect of circuits is their role in the robustness of Boolean networks with respect to different deterministic update schedules. In this context a key mathematical element is the update digraph which is a labeled digraph associated to the network and whose labels on the arcs are defined as follows: an arc (u,v) is said to be positive if the state of vertex u is updated at the same time or after than that of v, and negative otherwise. Hence, a cycle in the labeled digraph is called positive (negative) if all its arcs are positive (negative). This leaves in evidence that talk of "positive" and "negative" has different meanings depending on the contex: signed digraphs or labeled digraphs. Thus, we will see in this thesis, relationships between feedback sets and the dynamics of Boolean networks through the analytical study of these two fundamental mathematical objects: the signed (connection) digraph and the update digraph.
|
40 |
Visualization of Ant Pheromone Based Path FollowingSutherland, Benjamin T. 2009 December 1900 (has links)
This thesis develops a simulation and visualization of a path finding algorithm based on
ant pheromone paths created in 3D space. The simulation is useful as a demonstration of
a heuristic approach to NP-complete problems and as an educational tool for
demonstrating how ant colonies gather food. An interactive real time 3D visualization is
built on top of the simulation. A graphical user interface layer allows user interaction
with the simulation and visualization.
|
Page generated in 0.0555 seconds